
DB-Main Manual Series
VOYAGER 2 REFERENCE MANUAL

VERSION 8 RELEASE 0 - DECEMBER 2005
The University of Namur - LIBD
REVER s.a.

PREFACE

We believe that programs like emacs, AutoCAD1, Word2 and TeX3 owe their success partially to the
existence of a language4 allowing the user to write macros or even programs. Indeed, such languages
fill a gap between built-in functionalities and those expected by the user. This argument suffices to
explain why we chose to define and to implement such a language for the DB-MAIN tool.
Because small steps are more secure than large ones, at the beginning - when Voyager did not exist yet
- this language had to be a simple script facility for generating reports. Now, this language shares the
characteristics of its big brothers and even has a name: Voyager 2. This last issue was the most difficult
to settle!
This manual was written as a reference manual and therefore is quite concise in order to give the reader
a maximum of details economically. We are conscious that the examples are rather scarce, especially
regarding the use of the repository. For this reason, this document is only a first version of what will
ultimately become a series of manuals: reference manual; users’s guide; and tutorial.
I thank the DB-MAIN, DB-MAIN/01, INTER-DB, PROAGEC research groups and - last but not least
- the Professor J.-L. Hainaut for their support in my work.

 V. Englebert.

1. AutoCad and AutoLisp are trademarks of Autodesk.
2. Word and WordBasic are trademarks of Microsoft.
3. TeX is a sophisticated program designed to produce high-quality typesetting, especially for mathematical text. It was

created by Donald Knuth.
4. Elisp, AutoLisp, WordBasic.

FOREWORDS

Foreword to Version 2 Release 1
The last edition of this manual was named release 1.0. We decided to split the version number and to
name each part respectively version and release. A new version introduces important modifications or
significative modifications although a new release means only minor changes.
The Version 2 release 1 introduces major changes like: lexical analysis facilities1, new object types2,
textual properties, object removal3, modification and meta-properties4 in the repository.
One major change in the environment is the new console. It is no more possible to quit DB-MAIN by
closing the Voyager 2’s console. This console has one disadvantage: the display is quite slow. But be
sure that your program is as fast as before.
In this release, the format of the .oxo files has changed. So it is nevessary to recompile your former pro-
grams with the new compiler. The compiler is backward compatible.

Foreword to Version 3 Release 0
Voyager 2 has now the same version number as DB-MAIN.
Several mistakes in the reference manual have been corrected5. I thank Jean-Marc Hick for his help to
improve the quality of the "modular programming" part with his pertinent remarks. And, last but not
least, I thank Richard Mairesse for his kindness - the page 42 would never have been printed without
his knowledge of Postscript.
The architecture of the abstract machine has been improved. In previous releases, the abstract machine
was unique and static. We can now have several abstract machines at the same time, and the number of
abstract machines is not limited. This improvement allows us to call functions/procedures from other
V2 programs (cfr. 17).
Voyager has now standard Windows dialog boxes (cfr. page 42).
The use of the compilers and DB-MAIN are now limited to people having an electronic key. This is the
price we have to pay for being famous. Without the electronic key, it is impossible to run the compiler
and DB-MAIN behaves in "demo" mode (the size of the repository is limited). A whole chapter
explains these changes (cfr. 19).
The programs6 listings have been removed from the appendices and the font has been reduced to get a
smaller and more handy manual.
A β -version7 existed during a while between the releases 2.1 and 3.0. This version allowed the use of
one undocumented procedure (call_V2). This statement is now deprecated and should no more be used.
(cfr. 17)

Foreword to Version 4 Release 0
The abstract machine and the compilers have been translated into 32-bit code. Hence, some limitations
vanished. The repository has been improved in order to represent graphical properties (position, font,
size, ...). The following bugs have been fixed:
• Concatenation of two empty lists.
• The documentation now describes the CharToStr function.

1. Chapter 10.
2. Sections 12.48 and 12.49.
3. Chapter 15.
4. Chapter 16.
5. I thank Philippe Thiran for his help.
6. The user can find these files in the DB-MAIN distribution.
7. This version also had some dialog boxes and was distributed to some partners.

• The SetFlag function is fixed.
The main change is the evolution of the repository in order to generalize it and to represent various kind
of information like programs, process, procedures, etc. For this reason, we decided to attach the coll_et
object-type to data_object via the DATA_COLET link and no more to the entity_type object-type.
Unfortunately, Voyager 2 is not able to take this generalization into account and to preserve the existent
programs.
So, a query expressed as

entity_type: ent;
...
ENTITY_TYPE[ent]@ENTITY_COLET:L

should be translated into

data_object: dta;
dta2ent(DATA_OBJECT[dta]@DATA_COLET:L with GetType(dta)=ENTITY_TYPE)

where dta2ent is a function that you can write yourself as:

function list dta2ent(list: L1)
 entity_type: ent;
 list: L2;
{ for ent in L1 do {
 AddLast(L2,ent);
 }
 return L2;
}

The compiler will now stop if the entity_colet constant is encountered.
Another modification is the introduction of the first concepts to represent "processes"8 (see page 92).

Foreword to Version 5 Release 0
This version is endowed with a large number of new concepts. Processes and advanced graphical repre-
sentations are now supported by DB-MAIN. The repository has thus considerably growed to such an
extent that its representation does no more take up one sheet! Some functions have also been added (see
section 8.8).
People have indicated some troubles when the path of the compiler contains one or several space char-
acter. This problem can be avoided with the "-quote" parameter in the command line. Unfortunately,
this does not work with Windows NT.
They are now two switches in the electronic key. One to allow the programmer to port .oxo files to
some other station with a precise electronic key; and another key to distribute them in an anonymous
way (the -Kall option). The compiler displays the status of those switches.
The extension of the repository has introduced new keywords. The programmer should check if these
new reserved words are not used as variables or function names in his programs. The posx, posy, and
color attributes are now managed in a different way (see section 8.8).

Foreword to Version 6 Release 0
This version has no big changes. Several bugs have been fixed (mainly in the libraries). Amongst the
bugs, we can cite:
• the parameters of a foreign procedure.
• the assignment between processes when a process does not exists.

8. In the large!

• the behaviour of some dialog boxes.
• the compiler now generates error messages that are Emacs-compliant.
• the size of the stack has been increased (3 X)
• the SetProperty has been fixed (carriage return).
• the concatenation of strings (empty strings).

Foreword to Version 6 Release 5
This version has two major changes. Several bugs has been also fixed. The changes are:
• The documentation describes two new function. The CallSync function allows a Windows or DOS

program to be executed and forces the calling Voyager 2 program to wait for the execution of that
Windows program to be finished before continuing its execution. The GetLambda function returns a
lambda expression from a function/procedure name in a Voyager 2 program.

• This version manages a new concept. The note object (free text attached to any generic object) is
now supported by Voyager 2.

Foreword to Version 7 Release 0
Version 7 of Voyager 2 contains various major changes, some of them making previous versions of
Voyager 2 programs obsolete:
• The new procedure "transfo" allows a Voyager 2 program to execute an Advanced Global Transfor-

mation Script of DB-MAIN. This script are handled in strings, so they can be build dynamically.
• Several modifications to the repository of DB-MAIN which force changes to Voyager 2 programs:

− Notes can now be connected to several objects in a schema.
− Schemas can now be of various types. A new field has been added to the schema object type and

new constants have been defined as values for this field.
− The part of the repository concerning processing units, including their decomposition and the

resources they use, has been completely redesigned.
− An owner_of_proc_unit is no more a schema, a group or a data_object, but only a schema or an

ent_rel_type.
• The compiler was previously made up of two parts: comp_v2.exe and comp_v1.exe. The second

part is now a dll file in order to avoid problems for finding it by the first part when long filenames
are used. So, now, the files are comp_v2.exe and comp_v1.dll.

This manual itself contains two main changes:
• A new chapter about global variables has been added.
• The chapter presenting the repository has been rewritten.

Foreword to Version 8 Release 0
Version 8 of Voyager 2 contains major repository changes, some of them making previous versions of
Voyager 2 programs obsolete:
• The part of the repository concerning consumptions, including their roles with processing units and

resources, has been completely redesigned.
• The sub_element has been renamed into rel_element.
• The objects consumption, rel_element, re_isa and environment have names and descriptions.
New blackboxes have been implemented and several bugs have been also fixed.

 i
CONTENTS

PREFACE ..3

FOREWORDS ..5

CONTENTS ..I

LIST OF FIGURES .. VII

LIST OF TABLES... IX

PART I
THE VOYAGER 2 LANGUAGE... 1

CHAPTER 1
PRELIMINARIES...3

CHAPTER 2
LEXICAL ELEMENTS...5

2.1 Comments.. 5
2.2 Operators ... 5
2.3 Identifiers... 5
2.4 Reserved words ... 6
2.5 Constants ... 6

CHAPTER 3
GLOBAL DEFINITIONS ..11

CHAPTER 4
TYPES ...13

4.1 Integers .. 13
4.2 Floats ... 13
4.3 Characters .. 13
4.4 Strings.. 14
4.5 Lists ... 15
4.6 Cursor .. 15
4.7 Files ... 16
4.8 References ... 16

CHAPTER 5
EXPRESSIONS..17

5.1 Precedence and associativity of operators ... 17
5.2 Arithmetic Expressions ... 18
5.3 Reference Expression .. 18
5.4 Functional Assignment .. 19

CHAPTER 6
LIST EXPRESSIONS ...21

6.1 Overview ... 21
6.2 Operations.. 24

6.2.1 Concatenation.. 24
6.2.2 Intersection .. 24

ii Contents
6.2.3 Insertion ...24
6.2.4 Miscellaneous ..25

CHAPTER 7
STATEMENTS ... 27

7.1 General rules ..27
7.2 Assignment ..27
7.3 Selection Statements ..29

7.3.1 The if-then Statement ..29
7.3.2 The if-then-else Statement ...29
7.3.3 The switch Statement...29

7.4 Iteration Statements ...30
7.4.1 The while Statement ..30
7.4.2 The repeat Statement ...31
7.4.3 The for Statement ..31
7.4.4 The goto Statement ..32
7.4.5 The label Statement ...32
7.4.6 The break Statement ..32
7.4.7 The continue Statement ...33
7.4.8 The halt Statement ...33
7.4.9 The interrupt statement ..33

CHAPTER 8
OPERATIONS .. 35

8.1 Operations on Characters...35
8.2 Operations on Strings...36
8.3 Operations on Lists and Cursors ..38
8.4 Operations on Files ..39
8.5 Interface Operations...42
8.6 Time Operations...44
8.7 Flag Operations..45
8.8 General Operations ..46
8.9 Blackox ..48

8.9.1 BlackBoxP ...48
8.9.2 BlackBoxF ...50

CHAPTER 9
FUNCTIONS AND PROCEDURES .. 53

9.1 Definition ...53
9.2 Recursiveness...54

CHAPTER 10
LEXICAL ANALYZER.. 57

PART II
THE REPOSITORY ...61

CHAPTER 11
REPOSITORY DEFINITION... 63

11.1 Project ..67
11.2 ERA schema ..68

11.2.1 Schema...68
11.2.2 Entity type..68
11.2.3 Rel-type..68
11.2.4 Attribute...68
11.2.5 Processing unit...68

 iii
11.2.6 Role ... 68
11.2.7 Generalization/specialization .. 68
11.2.8 Group and constraint ... 69
11.2.9 Collection .. 69

11.3 UML class diagram ... 70
11.4 UML activity diagram ... 70

11.4.1 Schema .. 70
11.4.2 Action state.. 70
11.4.3 Initial state, final state, synchronisation, decision, signal sending and receipt 70
11.4.4 Object state .. 70
11.4.5 Control flow .. 71
11.4.6 Object flow.. 71

11.5 UML use case diagram.. 71
11.5.1 Schema .. 71
11.5.2 Use case... 71
11.5.3 Actor.. 71
11.5.4 Extend, Include and use case generalization relations .. 71
11.5.5 Actor generalization .. 72
11.5.6 Association .. 72

11.6 Textual document .. 72
11.7 Set of products and connection.. 72
11.8 Note ... 72
11.9 Meta object and meta property .. 72

CHAPTER 12
OBJECTS DEFINITION..75

12.1 generic_object.. 76
12.2 user_object... 77
12.3 note .. 77
12.4 nn_note .. 78
12.5 system .. 78
12.6 product ... 79
12.7 schema ... 79
12.8 set_of_product ... 80
12.9 set_product_item ... 80
12.10 document ... 81
12.11 text_line ... 81
12.12 connection.. 82
12.13 data_object... 82
12.14 ent_rel_type ... 82
12.15 entity_type ... 83
12.16 rel_type .. 83
12.17 attribute.. 83
12.18 si_attribute ... 84
12.19 co_attribute .. 85
12.20 owner_of_att.. 86
12.21 component ... 86
12.22 group.. 87
12.23 constraint ... 88
12.24 member_cst.. 89
12.25 collection ... 89
12.26 coll_et .. 89
12.27 cluster .. 90
12.28 sub_type... 90
12.29 role ... 91
12.30 et_role .. 92
12.31 real_component ... 92
12.32 proc_unit.. 92

iv Contents
12.33 element...93
12.34 rel_element...93
12.35 p_expression ..94
12.36 environment ...95
12.37 state ..95
12.38 consumption...96
12.39 cons_pu ..96
12.40 cons_res ...97
12.41 cons_role ..97
12.42 resource ..98
12.43 re_isa ..98
12.44 res_role...99
12.45 ro_isa..99
12.46 can_play ...99
12.47 owner_of_proc_unit...100
12.48 meta_object ..100
12.49 meta_property ..101
12.50 user_viewable ..102
12.51 user_view ...103
12.52 product_type ..103
12.53 schema_type...104
12.54 document_type...104

CHAPTER 13
PREDICATIVE QUERIES .. 105

13.1 Introduction..105
13.2 Specifications...106

13.2.1 Global Scope Queries ..106
13.2.2 Restricted Scope Queries...106

CHAPTER 14
ITERATIVE QUERIES... 109

CHAPTER 15
OBJECT REMOVAL ..111

CHAPTER 16
PROPERTIES ... 113

16.1 Textual Properties ..113
16.2 Dynamic Properties..115

16.2.1 Introduction..115
16.2.2 Explanation ..115

PART III
MODULAR PROGRAMMING ..117

CHAPTER 17
LIBRARY AND PROCESS ... 119

17.1 The New Architecture..119
17.2 Voyager 2 Process ..120
17.3 Libraries ...123
17.4 Formal Definitions ...124

17.4.1 The use Function..124
17.4.2 The GetLambda Function ..124
17.4.3 The ! suffix unary operator ..124
17.4.4 The :: suffix unary Operator ..124

 v
17.4.5 The :: binary Operator ... 124
17.5 Literate Programming.. 125

CHAPTER 18
THE INCLUDE DIRECTIVE...127

CHAPTER 19
SECURITY ...129

PART IV
APPENDIX.. 131

APPENDIX A
THE VOYAGER 2 ABSTRACT SYNTAX ..133

A.1 The Syntax... 133
A.2 Remarks... 135

APPENDIX B
THE VAM ARCHITECTURE...137

APPENDIX C
ERROR MESSAGES WHEN COMPILING..139

APPENDIX D
ERROR MESSAGES DURING RUNTIME ..143

APPENDIX E
FREQUENTLY ASKED QUESTIONS ..145

E.1 Environment Relation Questions... 145
E.1.1 How do I compile a program?... 145
E.1.2 Question How do I write efficient programs ? .. 145
E.1.3 I cannot close the console ! Why?... 146
E.1.4 When I load program, DB-MAIN tells me that the version of the program is too old. 146
E.1.5 Why does the compiler find errors in my program although it was working fine with older

versions?.. 146
E.2 Language Specific Questions .. 146

E.2.1 In a predicative query, DB-MAIN tells me that there is an invalid assignment. Why? 146
E.2.2 Is there a nil value like in Pascal? ... 147
E.2.3 Why is my request looping?.. 147
E.2.4 How can I empty a list L? ... 147
E.2.5 How can I test if a list is empty ? .. 147

APPENDIX F
REGULAR EXPRESSIONS ...149

BIBLIOGRAPHY ..151

INDEX ..153

vi Contents

 vii
LIST OF FIGURES

Figure 8.1 - A DialogBox Window. ... 42
Figure 8.2 - A File Browsing Window... 43
Figure 8.3 - A Message Box. ... 43
Figure 8.4 - A Choice Dialog... 44
Figure 11.1 - The "macro" view... 64
Figure 11.2 - The "data" view. ... 65
Figure 11.3 - The "notes" view .. 65
Figure 11.4 - The "process" view... 66
Figure 11.5 - The "graph" view.. 66
Figure 11.6 - The "inheritance" view. .. 67
Figure 12.1 - Graphical representation of the employee table... 75
Figure 12.2 - Window sample showing the "mark" interface. ... 77
Figure 13.1 - Acadamic Schema. ... 107
Figure 17.1 - This schema depicts the memory state with two programs and three running processes. 119
Figure 17.2 - Litterate Programming: an example of Voyager 2 program including an explain clause. 125
Figure 17.3 - Literate Programming: The ".ixi" file is produced from the Voyager 2 program shown in Figure

17.2. Each "explain clause" is used to document exported functions as well as the library itself. 126
Figure B.1 - The Voyager Architecture. ... 138

 ix
LIST OF TABLES

Table 2.1 - Operators and separators. .. 5
Table 2.2 - Reserved keywords.. 6
Table 2.3 - Reserved keywords (types).. 6
Table 2.4 - Constants denoting entity-types... 7
Table 2.5 - Constants denoting links.. 7
Table 2.6 - Miscellaneous Constants. .. 8
Table 2.7 - Field Constants. ... 8
Table 2.8 - Error Constants. ... 9
Table 4.1 - Conventions about special characters.. 13
Table 4.2 - Meta-characters used in string constants. .. 14
Table 5.1 - Operators: Precedence and Associativity rules ... 17
Table 11.1 - Special action states... 70
Table 11.2 - Type of elements for relations between use cases ... 71

PART I

THE VOYAGER 2 LANGUAGE

Chapter 1

Preliminaries

Voyager 2 is an imperative language with original characteristics like the list primitive type with gar-
bage collection and declarative requests on the predefined repository of the DB-MAIN tool. Other cha-
racteristics will be discussed further in this document. Because Voyager 2 is similar to traditional
languages like C and Pascal, we will suppose in this reference manual that the reader has a good
knowledge of them.
A Voyager 2 program is composed of three distinct sections:

global variables definitions
functions definitions
main body

The global variables definitions section contains the definition of all the global variables of the pro-
gram. The scope of these variables is the whole program as well as the functions and the procedures.
Constants can also be defined in this section. The functions definitions section will contain the defini-
tion of all the functions and all the procedures needed by the program. Functions will not be distin-
guished from procedures in this document unless it is explicitly mentioned. The scope of a function is
the whole program1. The main body section is the main program, ie. a list of instructions enclosed
between the two keywords "begin" and "end". Only the last section is mandatory in a Voyager 2 pro-
gram. The main program is the equivalent fo the main function in C, Voyager 2 begins the execution
there.

1. Here is a first difference with Pascal: a function f can call a function g defined afterwards.

4 Chapter 1 Preliminaries

Chapter 2

Lexical Elements

2.1 Comments
A comment in a Voyager 2 program begins with an occurrence of the two characters /*, which are not
enclosed in a string constant, and ends with the first occurrence of the two characters */. Comments
may contain any characters and may spread over several lines of the program. Comments do not have
any effect on the meaning of the program.
A comment may also be any characters found after the two characters // in one line.
Example:

/* Add comments to
** your programs, please ! */
begin
 x:=x+1; // and comments must be pertinent !
end

2.2 Operators
The operator tokens are divided in several groups as shown in Table 2.1.

Table 2.1 - Operators and separators.

Token class Tokens
expression operators + - / mod ++ **

or and xor not
< > <= >= <> =

instruction operators := <- << >> +> <+
separators . , ; () [] { }

Expression operators are used to build new expressions from other ones, instruction operators are a
convenient way to replace classical functions by infix operators.

2.3 Identifiers
An identifier is a sequence of lower-case and upper-case letters, digits and underscores. An identifier
must begin with a letter, identifiers beginning with an underscore are reserved for keywords having a
special meaning for the language. There is no restriction on the length of an identifier. Finally, an iden-

6 Chapter 2 Lexical Elements
tifier must be distinct of any reserved keyword (cfr. section 2.4) and any predefined constant name (cfr.
section 2.5).
Examples:

factorial PI_31415 A_B__C_ are all valid identifiers.
_PI 314_PI for are all incorrect identifiers.
A_Einstein A_EINSTEIN a_einstein are three distinct identifiers.

2.4 Reserved words
Some words (cfr. tables 2.2 and 2.3) are reserved for the language and can not be redefined by the user.

Table 2.2 - Reserved keywords.

_GetFirst do IsNotNull StrBuild
_GetNext else IsNoVoid StrConcat
AddFirst end IsNull StrFindChar
AddLast Environment IsVoid StrFindSubStr
and GetCurrentSchema kill StrGetChar
as eof label StrGetSubStr
AscToChar ExistFile Length StrItos
begin export member StrLength
break for mod StrSetChar
call function neof StrStoi
callSync get OpenFile StrToLower
case GetAllProperties or StrToUpper
CharIsAlpha GetCurrentObject otherwise switch
CharIsAlphaNum GetFirst print TheFirst
CharIsDigit GetFlag printf then
CharToAsc GetLast procedure TheNext
CharToLower GetProperty read to
CharToStr GetType readf Transfo
CharToUpper goto rename until
ClearScreen halt repeat use
CloseFile if return void
continue in SetFlag Void
create interrupt SetPrintList while
delete IsActive Setproperty xor

2.5 Constants
In Voyager 2, constants are predefined variables with constant expressions. The constant names are lis-
ted in tables 2.4, 2.5, 2.6, 2.8, and 2.7.

attribute component
char connection
cluster constraint
co_attribute data_object
coll_et document
collection ent_rel_type
complex_user_object entity_type

Table 2.3 - Reserved keywords (types).

2.5 Constants 7
et_role product
file real_component
float rel_type
generic_object role
group schema
integer set_of_product
list set_product_item
member_cst si_attribute
meta_object string
meta_property sub_type
nn_note system
note user_object
owner_of_att

Table 2.4 - Constants denoting entity-types.

_char _file
_float _integer
_lambda _list
_program _string
ATTRIBUTE CLUSTER
CO_ATTRIBUTE COLL_ET
COLLECTION COMPLEX_USER_OBJECT
COMPONENT CONNECTION
CONSTRAINT DATA_OBJECT
DOCUMENT ENT_REL_TYPE
ENTITY_TYPE ET_ROLE
GENERIC_OBJECT GROUP
MEMBER_CST META_OBJECT
META_PROPERTY NN_NOTE
NOTE OWNER_OF_ATT
PRODUCT REAL_COMPONENT
REL_TYPE ROLE
SCHEMA SI_ATTRIBUTE
SUB_TYPE SYSTEM
USER_OBJECT

CLU_SUB COLL_COLET
CONST_MEM CONTAINS
DATA_GR DOMAIN
ENTITY_COLET ENTITY_CLU
ENTITY_ETR ENTITY_SUB
GR_COMP GO_NN
GR_MEM IS_IN
MO_MP NOTE_NN
OWNER_ATT REAL_COMP
REL_RO RO_ETR

Table 2.5 - Constants denoting links.

Table 2.3 - Reserved keywords (types).

8 Chapter 2 Lexical Elements
SCH_COLL SCH_DATA
SYS_MO SYSTEM_SCH

Table 2.6 - Miscellaneous Constants.

_A L_ROLE
_R L_SNAME
_W L_VERSION
ARRAY_CONTAINER LIST_CONTAINER
ASS_GROUP MARK1
BAG_CONTAINER MARK2
BOOL_ATT MARK3
CHAR_ATT MARK4
COMP_GROUP MARK5
CON_COPY MAX_STRING
CON_DIC N_CARD
CON_GEN NUM_ATT
CON_INTEG OBJECT_ATT
CON_XTR OR_MEM_CST
DATE_ATT PROP_CORRUPTED
EQ_CONSTRAINT PROP_NOT_FOUND
ERA_SCHEMA RTROUND
ETROUND RTSHADOW
ETSHADOW RTSQUARE
ETSQUARE SELECT
FALSE SEQ_ATT
FLOAT_ATT SET_CONTAINER
HIDEPROD TAR_MEM_CST
INC_CONSTRAINT TRUE
SCHEMA_DOMAINS UMLACTIVITY_DIAGRAM
INDEX_ATT UMLCLASS_DIAGRAM
INT_MAX UMLUSECASE_DIAGRAM
INT_MIN UNIQUE_ARRAY_CONTAINER
L_CRITERION UNIQUE_LIST_CONTAINER
L_DATE USER_ATT
L_FREE VAR_CHAR_ATT
L_NAME

atleastone key
coexistence last_update
container length
creation_date mark_plan
criterion max_con
decim max_rep
disjoint mem_role
exclusive min_con
file_desc min_rep
filename multi

Table 2.7 - Field Constants.

Table 2.5 - Constants denoting links.

2.5 Constants 9
flag name
font_name other
font_size path
identifier posx
posx2 text_font_size
posy total
posy2 type
predefined type_object
primary type_of_file
recyclable updatable
reduce user_const
secondary value
sem version
short_name view
stable where
status xgrid
tech ygrid
text_font_name zoom

Table 2.8 - Error Constants.

ERR_BAD_TRANSFO ERR_FILE_CLOSE
ERR_CALL ERR_FILE_OPEN
ERR_CANCEL ERR_PATH_NOT_FOUND
ERR_DIV_BY_ZERO ERR_PERMISSION_DENIED
ERR_ERROR

Table 2.7 - Field Constants.

Chapter 3

Global Definitions

The Global Variables Definitions section contains the definition of all the global variables and all the
constants of the program. This section is composed of definition lines which respect the following syn-
tax:

〈definition line〉 ← 〈type〉 : 〈var-const〉, …, 〈var-const〉;
〈var-const〉 ← 〈variable〉 | 〈constant〉
〈variable〉 ← 〈identifier〉
〈constant〉 ← 〈identifier〉 = 〈expression〉

Types are defined in chapter 4. In a definition line, when an expression is associated with an identifier,
this constant is considered being initialized by this expression. Each time this variable is used, its occur-
rence is replaced by the corresponding expression. This characteristics differs from the C1 and Pascal
languages since they evaluate the expression as soon as it is found. In the Voyager 2 language, the eva-
luation process is delayed until the variable is used. As a consequence, constant expression may contain
identifiers and function names that are outside the scope of the expression. Unlike macros in C, cons-
tants have a type and the evaluation of the constant must match it.
Example:

Program 1.

integer: s=m+c2, age;
integer: lname=strlen(pname),m,c2;
string: pname="Einstein";
begin
m:=2; c2=3;
print(s*2);
m:= 4;
print(s*2);
print(lname);
end

will print the values "10" ((2+3)2), "14" ((4+3)2), and "8" (length of "Einstein"). Let us note that the
evaluation of constants may return different values depending on the context.

1. The comparison does not hold neither with the macros of the C language nor with the const type specifier of the C++ lan-
guage

12 Chapter 3 Global Definitions
Program 2.

integer: sum=a+b;
procedure foo(integer: a)
 integer: b;
{ b:=1;
 print(sum);
}
begin
 foo(2);
end

will print the value "3". The function definitions section will contain all the function/procedure defi-
nitions. The syntax of a function/procedure definition is fully explained in Chapter 9. Each function/
procedure can be called from anywhere in the program: from a function, from a procedure or from
the main body even if the call to the function/procedure is before its definition.

Chapter 4

Types

4.1 Integers
The integer type covers all the integer values from INT_MIN to INT_MAX. Integers are signed and the
integer constant INT_MIN (resp. INT_MAX) is the smallest (resp. greatest) value of this type. Integer
constants are signed1 literals composed of digits 0,1,…,8,9. The integer type is named integer.
Examples:

1, 123, -458, -1021 are valid integer constants
+458, 3.1415, 3E+6 are not valid integer constants

4.2 Floats
The float type covers all the float values from 3.4E-38 to 3.4E+38. Float constants are signed literals
composed of digits 0,1,…,8,9 and "." as decimal separator,. The float type is named float.
Examples:

3.1415, -1000000000000 are valid float constants
+458.25, 3E+6 are not valid float constants

4.3 Characters
The character type covers the whole ASCII character set from code 0 to 255. All the characters having
a graphic representation have a corresponding constant in this type: the graphic representation itself
enclosed between simple quotes. Otherwise characters can be represented by their ASCII value like
'^val^'.
Examples:

char: a=’a’, Z=’Z’, plus=’+’; char: bell='^7^', strange='^236^';
Some interesting non-graphic characters have a special representation, as illustrated in table 4.1.

1. The unary operator + is not allowed.

Character Representation
backspace ’\b’

Table 4.1 - Conventions about special characters.

14 Chapter 4 Types
4.4 Strings
Strings are sequences of characters. Although the programmer must take care of details like the size of
the memory block where the string is stored, in Pascal and C, these mechanisms are completely transpa-
rent in Voyager 2. In this manual, the sentence "the size of the string s" means the number of characters
stored in the string s. String constants are sequence of characters between double quotes. The length of
a string must be less than the value found in the constant MAX_STRING.
Example:

The statement

print("Albert Einstein")

will produce

Albert Einstein

and

print("1\tone\n2\ttwo\n^51^\tthree\n")

will produce

 1 one
 2 two
 3 three

In string constants some characters have a special representation as shown in table 4.2. The second part
of the table uses the same conventions as for the characters.

Table 4.2 - Meta-characters used in string constants.

Character Representation
backslash \ \\
double quote " \"
hat ^ \^
backspace \b
form feed \f
newline \n
carriage return \r
tab \t

Moreover,
1. Characters are examined from left to right.
2. If the ^ character is followed by a sequence of digits denoting a number between 0 and 255 followed

by ^, then the whole sequence is replaced by exactly one character with ASCII code equal to that
number. Otherwise, the first ^ character is interpreted literally, and the interpreter scans the right part
of the string.

form feed ’\f’
newline ’\n’
carriage return ’\r’
tab ’\t’
’ ’’’

Table 4.1 - Conventions about special characters.

4.5 Lists 15
3. If the \ character is followed by a letter (λ) and if "\ λ" does not denote a meta-character as depicted
in table 4.2, then the sequence is replaced by λ. The \ character is thus removed from the string.

Example:
The instruction

print("^1234^55^\^\\\h");

will print

^12347^\h

4.5 Lists
Lists are ordered collections of values. These values can be of any type (including list). Because lists
belong to a basic type (list), simple operations can be applied on lists. Another type, cursor, is strongly
associated to lists and will be discussed in next section. All the operations and operators available with
this type are presented here below.
A programmer can directly enter a constant list in a program simply by specifying the components of
the list between brackets. For example:

list: lint_ext, lint_exp;
begin
 lint_exp:=[1..20];
 lint_ext:=[1,2,3,5,8,13,21];
 print(lint_exp**lint_ext);
end

This program will print all the common values of the two lists: "1 2 3 5 8 13". The first list was defined
as a range of values, and the second one was defined explicitly. The syntax of list constants is:

〈list constant〉 ← "[" 〈list expressions〉 "]" | "[" 〈expression〉 "..." 〈expression〉 "]"
〈list expressions〉 ← Ø | 〈expression〉 ("," 〈expression〉)*

More complicated constant list expressions follow:
Examples:

[1,[1..fact(1)],2,[1..fact(2)],3,[1..fact(3)],4,[1..fact(4)]]
[[],[1,[]],[2,[1,[]]],[3,[2,[1,[]]]]]
[1,2,3..10,11] error: dots are not allowed here!

4.6 Cursor
Cursors are references to elements of lists. A cursor can either be null or be positioned. In latter case, it
can be either active or passive. Let us examine cursors in these different cases:

− null cursor: the cursor is not attached to any list and is not indicating any value.
− active cursor: the cursor is positioned on a value in a list, and this value can be consulted, remo-

ved, ...
− passive cursor: let us suppose that a cursor c is positioned on the value 2 in the list l=[1,2,3].

Then the value 2 is removed from the list l. Therefore the cursor has no more meaning and is said
being passive. If the program consults the value indicated by this cursor c, it gets an execution
error. Although this situation looks like the null reference, the situation is quite different since the
cursor is still attached to the list. This case will be discussed in the section 8.3.

16 Chapter 4 Types
4.7 Files
Objects of type file are references to files stored on disks. These objects become real references after a
call to the function OpenFile whose first argument is the file name and second argument is an integer
constant. This constant indicates the mode: _W if the file is created for writing, _R if the file is opened
for reading or _A is the file is opened for appending. Depending on the mode, the program may read or
write information. Writing always occurs at the end of the file and characters are read from the current
position. Programs must close all the opened files before leaving. More details are found in 8.4.

4.8 References
As mentioned in the section 1, Voyager 2 is integrated in the DB-MAIN tool; therefore it has an access
to the content of the repository. The full definition of the repository is presented in part II.
The repository of DB-MAIN is an object with relationships between object-types. The relationships are
one-to-many; they are named links. The attributes of an object type are named fields. An object is some-
times also called a reference. The following table summarizes the equivalence between these concepts:

ER-schema ↔ Voyager 2
entity-type ↔ object-type
entity ↔ object, reference
attribute ↔ field
relation ↔ link

To each object type present in the definition of the repository of DB-MAIN corresponds a type in Voya
ger 2. For instance, the type group corresponds to the "group" object type. Variables or expressions of
this type can either be references to an object of this object-type, be void (a special value denoting
nothing), or be invalid.
If a variable is a reference to an object, the value of its fields can be obtained with the "." operator. For
instance, the following program prints the name of the object referenced by the variable ent:

entity_type: ent;
begin
 ...
 print(ent.name);
 ...
end

Expressions composed with the "." operator may also occur in the left side part of an assignment, like in
the following example:

entity_type: ent;
begin
 ...
 ent.name:="CUSTOMERS";
 ...
end

The right part of the "." operator is in fact an integer value identifying one field among all the others. In
this example, name is a predefined integer constant.

Chapter 5

Expressions

Expressions are classified into several categories depending on the type returned by the evaluation pro-
cess. Some expressions are untyped mainly due to access to the repository and to lists, for these particu-
lar cases, the type verification is delayed until the evaluation time. The first subsection presents the
operators used in expressions. Following subsections present operators and functions provided by the
language for each type.

5.1 Precedence and associativity of operators
Each expression operator in Voyager 2 has a precedence level and a rule of associativity. When paren-
theses are not used explicitly to indicate the grouping of operands with operators, precedence rules are
applied. If two operators have the same precedence, they are grouped following the associativity rule
(left/right associativity). Table 5.1 defines the precedence and associativity rules of each operator. Lines
separate operators according to their precedence. One line separates two groups of operators and each
operator inside one group have the same precedence. If a group is above another one, then its operators
will be evaluated before the operators of the other group. For instance, the precedence of * is higher
than the precedence of +.
Example:

The following expressions may be evaluated as follows with the precedence/associativity rules:

Original expression Equivalent expression
a+bc a+(bc)
a=not b and c or d a=(((not b) and c) or d)
a.length > 10 = 1 ((a.length)>10)=1

Token Operator Class Associates Operandsa

not logical not prefix no i, f
- unary minus unary no i, f
* multiplicative binary left i, f
/ division binary left i, f
mod modulo binary left i
** list intersection binary left l

Table 5.1 - Operators: Precedence and Associativity rules

18 Chapter 5 Expressions
5.2 Arithmetic Expressions
Operators +1, -, *, /, mod, and, or, not, <, >, <=, >=, <>, = require integer or float expressions as operand
(except for mod that require only integer expressions). Their operands are fully evaluated before their
own evaluation but the order is left unspecified. The +, -, *, / and mod operators are respectively the
addition, subtraction, multiplication, division and remainder of division.
If a division by zero occurs (x/y and y=0), the result is 0 and the error register is set to DIV_BY_ZERO.
The following table gives a formal definition to othyer operators:

a>b returns : if a>b then 1 else 0
a<b returns : if a<b then 1 else 0
a<=b returns : if a≤b then 1 else 0
a>=b returns : if a≥b then 1 else 0
a=b returns : if a=b then 1 else 0
a<>b returns : if a= b then 1 else 0
not (a) returns : if a≠0 then 1 else 0

5.3 Reference Expression
The word "reference" groups several types together and do not allow distinction between them. Let us
examine the following line:

attribute: att;

att is a variable that can reference an object in the repository. We will see in chapter 14 that the fol-
lowing statement:

att:=GetFirst(attribute[a]{TRUE})

puts into the variable att the reference to the first attribute found in the repository of DB-MAIN. This
variable can be used to consult or modify properties of the object:

+ addition binary left i, f, s
++ difference binary left i
* list concatenation binary left l
< less than binary left i, f, c, s
> greater than binary left i, f, c, s
<= less than or equal binary left i, f, c, s
>= greater than or equal binary left i, f, c, s
<> different binary left i, f, c, s
= equal binary left i, f, c, s
and logical and binary left i, f
or logical or binary left i, f
xor logical xor binary left i, f

:== functional assign-
ment

binary right any

, separator binary left any

a. Operands must always be of the same type (except for integer and float). The following letters denote expected types by
previous operators: l: list, i: integer, f: float, c: char, s: string, any: any type.

1. The + operator is overloaded in order to behave like the StrConcat function with strings.

Table 5.1 - Operators: Precedence and Associativity rules

5.4 Functional Assignment 19
Example:

print(att.name);
att.name:="FIRST-NAME";

The left part of the "." operator must be an identifier (global/local variable, parameter) denoting an
object. The left part must be a valid field name for the object specified in the right part. The right
expression must be either an integer or float expression or a string. String fields will be explained later
in chapter 16.

5.4 Functional Assignment
The ":==" operator behaves like the assignment operator (:=) except that the left-hand-value is returned
as the value of the expression.
Example:

integer: a,b;
string: s;
begin
 a:=(b:==0);
 if ((s:==read(_string))="Hello") then {
 print("World!");
 }
end

The first statement initializes the two variables a and b with the value 0. The second statement reads
one string from the console, puts it into the variable s and then compares this string with the string
"World!".
More explanations can be found in the section 7.2.

Chapter 6

List Expressions

6.1 Overview
Lists in Voyager 2 have no similar counterparts in Pascal and C. As explained in the subsection 4.5, lists
are ordered collections of values. A list has an existence which is not directly linked to the scope of
variables representing it. Values in lists may be of any type, even list, cursor, …A list exists in memory
until the program can no more use the values contained in this list, and the programmer does not have to
care about the memory management. Let us remember that values can be get through cursors or varia-
bles of type list.
Because lists in Voyager 2 are quite different from lists in other languages like Pascal, C and Lisp, some
definitions are necessary.
Definition 6.1 (List) Let l be a variable denoting a list of values v1, ...,vn, we write [v1,...,vn] the
content of this list.
Definition 6.2 (Ghost) We define • (a ghost) a special value having no meaning in Voyager 2. This value
can belong to lists.
Ghosts are invisible and therefore useless, but they will be used in graphical representation of lists and
in explanations.
Definition 6.3 (∂) We define a unary operator ∂. Let l be a list, then ∂l returns the list l from which all
the ghosts have been removed.
In other words, all the obsolete elements are removed from the list. Then ∂[•,1,2,[3,•],•]=[1,2,[3]].
Definition 6.4 (list equality, =) l1= l2 iff ∂l1 ≡ ∂l2 where the ≡ operator has the usual meaning. This
means that ghosts do not perturb lists comparison in Voyager 2.
The list equality is the usual way to consider the equality between lists for the programmer.
We associate a graphical representation to the lists, to the variables of type list and to the cursors in
order to ease the explanations. A list is represented by a rectangle containing values linked by arrows.
Values are represented by dashed boxes. A variable v of type list is represented by an arrow towards the
graphical representation of the list. A cursor c pointing to a value inside the list is denoted by an arrow
towards this value. Let us consider the following program:

1: List: L;
2: cursor: C;
3: begin
4: L := [1..4];

22 Chapter 6 List Expressions
5: attach C to L;
6: C >> 2;
7: kill(C);
8: C <<;
9: C +> [5..8];
10: C >>;
11: attach C to get(C);
12: C >>;
13: kill(C);
14: C >>;
15: kill(C);
16: C >>;
17: C <<;
17: end

At line 4, the list L is assigned to the list [1,2,3,4], at line 5, the cursor C is attached to the list L and the-
refore is indicating the first value of L. The instruction at line 6 moves the cursor two elements forward,
the cursor C is now indicating the value 3. The graphical representation of the state after line 6 is:

1 2 3 4L

C

This is a convention. Newly attached cursors always point to the first element. If the list is empty (L=[])
then the cursor is said to be null and has the special value void.
The instruction kill(C), at line 7, destroys the value under the cursor. So, the instruction kill(C) will des-
troy the value 3 in L. We represent this action by replacing the value 3 in L by the special value: •. The
cursor is still attached to the list L but it is now impossible to consult the value under C or to replace this
value by another one. The drawing becomes:

1 2 4L

C

With respect to the definition 6.4, the following property holds:
L = [1,2,4]

At lines 8 and 9, the cursor C is moved one element backward and the list [5,6,7,8] is inserted just after
C. The drawing becomes:

1 2 4L

C

5 6 7 8

Let us remark that the ghost value has disappeared. The reason is simple: the cell containing the ghost
value was no more referenced. So it was safe to suppress it. From the user’s point of view, it was impos-
sible to detect the presence of the ghost value after the execution of the instruction "C <<;".
The value under a cursor can be consulted with the function get. Lines 10 and 11 use this function to
attach C to the newly created list. The cursor is now indicating the first element of the new list: 5. The
lines 12 to 16 destroy the two elements 6 and 7 of this list, so, after their execution, C is indicating the

6.1 Overview 23
last value: 8. This list is now equivalent to the list [5,8] and for this reason if the cursor C is moved one
element backward, at line 17, one finds the value 5 under C as illustrated by the drawing:

1 2 4L

C

5 8

Although the general rule in Voyager 2 for passing values to functions is by value, list objects are
always passed by address1. Let us examine the meaning of the following program:

1: list: L,R;
2: procedure RemFirst(list: arg)
3: cursor: C;
4: { attach C to arg;
5: kill(C);
6: }
7: begin
8: L:=[1,2,3];
9: R:=L;
10: RemFirst(L);
10: print([L,R]);
11: end

After line 8, the state is described by this schema:

1 2 3
L

at line 6, when the first element has been deleted and the RemFirst function has been called:

2 3
L

arg

C

and finally at line 10:

2 3
L

R

and the result printed on the console will be:
[[2,3],[2,3]]

With respect to this principle, lists can be built inside a function and returned to the global environment.
The following program is a good example of what happens when a list is returned from a function:

list: L;
function list foo()
 list: local;
{ local:=[1..3];
 return local;
}
begin

1. Except some cases like the ++ operator and a few other functions.

24 Chapter 6 List Expressions
 L:=foo();
 print(L);
end

Because the list [1,2,3] is first referenced by the variable local, and finally referenced by the global
variable L, the list was not destroyed when the function finished.

6.2 Operations
Several operators exist specifically for the lists. The section describes them.

6.2.1 Concatenation
The infixed operator ++ takes two distinct lists and returns the concatenation of both. Let us note that
the arguments are detached of their body after execution. For instance, let us suppose that the cursor C
is attached to the list L1 and that the instruction R:=L1++L2 is performed, then the cursor C is now atta-
ched to the list R and no more to L1 the value of which is the empty list [].

function list: r ++ (list: l1, list: l2)

Precondition. lists l1 and l2 are two list expressions denoting distinct lists.
Postcondition. lists l1 and l2 are now empty. If the list l1 is [v1,...,vn] and l2 is [w1,...,wm], then the
result of the operation is a new list: [v1,...,vn,w1,...,wm]. After the call, l1=[] and l2=[].

The following examples show the effect of this operator:
Examples:

[1,2,3]++[4,5,6] → [1,2,3,4,5,6]
L1:=[[’a’,1]]; L1:=L1++[[’b’,2]] → [[’a’,1],[’b’,2]]
L2:=L1++L1; → error!
L2:=L1; L3:=L1++L2; → error!

6.2.2 Intersection
The infixed operator ** is used between two lists to compute all the common elements. There is no res-
trictions on the arguments of this operator.

function list: r ** (list: l1, list: l2)

Precondition. l1 and l2 are two lists. The type of the items stored in both lists may not be identical.
Postcondition. r is the list of all the values common to lists l1 and l2. If one object is present in both
lists but with different types (one super-type2 and one sub-type3 for instance), they are considered
distinct. The order of the returned list is left unspecified.

The following instances show the power of this operator:
[1,1,2,4]**[1,5,2] → [1,2]
[[1,2],[3,4],’b’,7]**[’a’,7,[3,4],["ab",GetCurrentSchema()]] → [[3,4],7]
l1:=[1,2,1,3,’a’,’a’,’b’];
l1**l1 → [1,2,3,’a’,’b’]

6.2.3 Insertion
To insert values in lists, several methods have already been presented. But none is as general as the ope-
rators +> and <+. These operators are infixed. For each one, the left operand must be an expression of
type cursor and the right operand may be any expression that can be inserted in a list. The effect of the
first (resp. second) operator is to insert the result of the right hand expression just after (resp. before) the
value designated by the cursor specified in the left operand.

2. For instance: data_object
3. For instance: ent_rel_type

6.2 Operations 25
In order to remove any ambiguity, these two operators can be defined more formaly as follows:
Let us analyse the effect of: C +> E
where C is any expression of type cursor and E is an expression.
1. If C is attached to a list L,

a) if the cursor C is null, then the value of E is inserted as the first element of the list L
b) if the cursor C is not null, then the value of E is inserted just after the value designated by the

cursor C.
2. If C is not attached to a list, the instruction fails, as well as the program.

This is an error of the programmer.
The effect of: C <+ E
is:
1. If C is attached to a list L,

a) if the cursor C is null. Then the value of E is inserted as the last element of the list L
b) if the cursor C is not null. Then the value of E is inserted just before the value designated by the

cursor C.
2. If C is not attached to a list. The instruction fails, as well as the program.

This is an error of the programmer.
In all the cases, the cursor C is unchanged and is still designating the same value as before the call of
the instruction.

6.2.4 Miscellaneous

function any: r get (cursor: c)

Precondition. The cursor c is attached to a list.
Postcondition. r is the value pointed by the cursor c.
on error: The program is interrupted and an error message is displayed.

Chapter 7

Statements

7.1 General rules
Each statement must be terminated by one semi-colon, except compound instructions after which this
character is optional.
The empty statement is not allowed in Voyager 2, however a compound statement may be empty.

7.2 Assignment
Assignment statements must respect the following syntax:

〈assignment-inst〉 ← 〈lhs〉 := 〈rhs〉
〈rhs〉 ← 〈expression〉
〈lhs〉 ← 〈variable〉 | 〈variable〉.〈field〉
〈field〉 ← 〈expression〉

The rhs-expression must have a type compatible with the type of the lhs-expression. If the lhs-expres-
sion has a field, then the evaluation of the field must return an integer value. Fields are specific to varia-
bles denoting a reference to a repository’s object and usually, the user will use a predefined constant
(cfr. 2.6) in place of complex expression. When this instruction is executed, the rhs-expression is first
computed and the result is then assigned to the lhs-expression.
Example:

int: a,b;
string: s;
begin
a:=1;
b:=a*2;
s:="Rob Roy";
end

When inheritance is involved during the assignment, this instruction is able to solve automatically the
ambiguity - dynamic type casting. Let us suppose that we have the following schema representing the
inheritance between four object types1 :

1. The example is not a part of the real schema.

28 Chapter 7 Statements

A B

C D

and the following program:

A: a;
B: b;
C: c;
begin
 ...
 b:=c;
 a:=b;
 ...
end

The last assignment is not trivial since the object referenced by b could be either of type C or D. But the
assignment is able to find the correct path between the type of a and the type of the object referenced by
b2.
If the assignment fails - if types are not compatible - then the program is aborted and the conflicting
types are displayed in the console.
The dynamic type casting performed by the assignment is not a general rule in Voyager 2. Therefore,
unless it is explicitly mentioned3, types must always be exactly identical. For instance, each time you
define a new function, arguments and parameters must always have the same type. For this reason the
following program is wrong:

C: c;
procedure foo(A:a){
 ...
}
begin
 ...
 foo(c);
end

The only way to pass the value c to the function is by using an explicit assignment; for instance:

C: c;
A: a;
procedure foo(A:a){
 ...
}
begin
 ...
 a:=c;
 foo(a);
end

Some suite of assignments can sometimes be optimized. Although performances are not critical for the
Voyager 2 programmer, strings may slow down some programs like parsers. For instance, the following
scheme is often observed in parsers:

2. Let us remark here, that the type of an object referenced by a variable may be different from the type of the variable! For
instance, just after the first assignment, the type of the object referenced by b is C although the type of the variable b is B.

3. The dynamic type casting is applied for the arguments of the function create.

7.3 Selection Statements 29
while neof(f) do {
 s:=read(_string) ;
 if s="begin" then
 ...
end

The scanned string will be put twice on the internal stack of the Voyager 2 virtual machine. The func-
tion read will read the string from the file and place it on the stack in order to put it into the variable s.
The evaluation of the condition of the if instruction will place the value of s on the stack. One obvious
optimization is not removing the value from the stack. This optimization can be achieved by the pro-
grammer by using the function assignment operator (:==) defined in the section 5.4.

7.3 Selection Statements
Selection statements direct the flow of control depending on the value of an expression.

7.3.1 The if-then Statement
The if-then statement executes a list of instructions if the evaluation of the condition is different
from 0. The syntax is:

〈if-then-statement〉 ← if 〈condition〉 then { 〈list-instruction〉 }
The evaluation of the expression condition must return an integer value d. If the value d is nonzero then
the list of instructions list-instruction is executed.
Example:

if n=0 then { n:=1; }

7.3.2 The if-then-else Statement
The if-then-else statement executes a list of instructions, either success or failure, depending on
the evaluation of the expression condition. The evaluation of the expression condition must return an
integer value (d). The flow of control is directed to the list of instructions success if the evaluation of
the expression condition is nonzero, and to the list failure if condition is evaluated to zero.

〈if-then-else-statement〉 ← if 〈condition〉 then 〈success〉 else 〈failure〉
〈success〉 ← { 〈list-instruction〉 }
〈failure〉 ← { 〈list-instruction〉 }

Example:

if m<n then {
 v:=m;
} else {
 v:=n;
}

7.3.3 The switch Statement
The switch statement chooses one of several flows of control depending upon a criterion. The criterion
must be either a variable or a variable with a field. Its type must be compatible with the values found in
the case statements, as if they were used with the "=" operator. Its syntax is:

〈switch-statement〉 ← switch (〈variable〉)
{ 〈case-list〉 〈default〉 }

〈case-list〉 ← Ø | 〈case-list〉 〈case-sttmt〉
〈case-sttmt〉 ← case 〈expression〉 : 〈list-instruction〉
〈default〉 ← Ø | otherwise : 〈list-instruction〉

30 Chapter 7 Statements
The meaning of such a statement can be described by another equivalent if-then-else statement as
showed below:

switch (v) {
case e1: s1
case e2: s2
 .
 .
 .
case en: sn
otherwise: s0
}

⇔

if v=e1 then { s1 }
else {
 if v=e2 then { s2 }
 else {
 .
 .
 .
 if v=en then { sn }
 else { s0 }
 .
 .
 .
 }
}

If the default clause is not present, then the list s0 is considered empty. This translation of the switch sta-
tement is in no way an explanation of the compilation process, so the order of evaluation of the ei

expressions is not garanteed by the Voyager 2 language. Therefore, expressions for which the evalua-
tion has a side effect are discouraged since the semantics is unspecified.
When the switch statement is executed the value of the variable is compared to each expression ei until
values are equal. Once this condition is satisfied, the respective list of instructions is executed. If all
tests fail, then no instruction is executed unless the default case is present in which its associated list of
instructions is executed.
Example:

switch (letter) {
case ’B’:
 print("Belgium");
 print(" (Belgique)");
case ’F’:
 print("France");
case ’S’:
 print("Spain");
 print(" (Espagne)");
otherwise:
 print("I don’t know!");
}

7.4 Iteration Statements
Iteration statements are the while, repeat and for instructions.

7.4.1 The while Statement
The while statement has the following syntax:

〈while-statement〉 ← while 〈condition〉 do 〈body〉
〈condition〉 ← 〈expression〉
〈body〉 ← 〈list-instruction〉

The evaluation of the condition must be an integer value. While the evaluation of this expression will
return non-zero, the body will be executed. The iteration stops when the evaluation of the condition
returns the value 0.
Example:

7.4 Iteration Statements 31
f:=1;
while n>0 do {
 f:=f*n;
 n:=n-1;
}

7.4.2 The repeat Statement
The repeat statement has the following syntax:

〈repeat-statement〉 ← repeat 〈body〉 until 〈condition〉
〈body〉 ← 〈list-instruction〉
〈condition〉 ← 〈expression〉

The evaluation of the expression condition must return an integer value. The body is executed until the
evaluation of the condition returns a nonzero value.
Example:

n:=read(_integer);
repeat {
 n:=n-1; } until n=0;

7.4.3 The for Statement
The for statement is probably the most usual instruction for doing iterations among a set of values.
The original feature of this statement is the iteration through the elements of lists. This characteristic
allows it to be used to visit references coming from the evaluation of a request. Its syntax is:

〈for-statement〉 ← for 〈iterator〉 in 〈list〉 do 〈body〉
〈iterator〉 ← 〈variable〉
〈list〉 ← 〈expression〉
〈body〉 ← 〈list-instruction〉

The evaluation of the expression list must return a value of type list. Moreover, each element of this list
must be of the same type as the variable iterator. If the list is empty, this statement has no effect except
the evaluation of the list. Otherwise, the variable iterator is instantiated with the first value found in the
list, and the body is executed. After the first execution of the body, iterator is initialized with the second
value of the list and the body is executed again; and so on with all the values of the list. When the for
statement is completed, the variable iterator is instantiated with the last value found in the list (the
value is unspecified if the list is empty).
Let us note that the time at which the list is evaluated is left unspecified, so it is recommended to avoid
any instruction that could have a side-effect on the evaluation of the list. The following examples show
very dangerous programs:
Examples:

for i in [1..n] do {
 print(i);
 n:=n+1; }

b:=1;
for i in [a,b] do {
 b:=2;
}

l:=[1..10];
for i in l do{
 l:=l++[11];
}

Here follows some correct use of the for instruction.

32 Chapter 7 Statements
Examples:

for i in [1..5+5] do {
 print(i);
}

for data in DATA_OBJECT[data]{@SCH_DATA:[sch]
 with data.name="Foo"} do {
 print(data.short_name);
 for gr in GROUP[gr1]{@DATA_GR:[data]} do {
 print(gr.name);
 }
}

for c in [’a’,’b’]++[’e’,’f’] do {
 print(CharToUpper(c));
}

for my_list in [[1,2],[3,4],[5]] do {
 print(my_list);
}

7.4.4 The goto Statement
The goto statement directs the flow of control to a statement labeled by an identifier. If this instruction
is used inside a function, the flow of control cannot go out of the body of the function. In the same way,
the control flow cannot be directed from the main body to a function. See 7.4.5 for a detailed example.

〈goto-statement〉 ← goto 〈identifier〉

7.4.5 The label Statement
The label statement is used to put a label in front of a statement. The syntax is:

〈label-statement〉 ← label 〈identifier〉
Example:

i:=0;
label loop;
if i<10 then {
 i:=i+1;
 goto loop;
}

7.4.6 The break Statement
The break instruction can only be used in for-in-do, while and repeat instructions. For the
while and repeat instructions, the effect of this instruction is equivalent to a goto instruction to a
label put just after the while/repeat instruction. This "breaks" the loop.
For the for-in-do instruction, the explanation depends on the list used for the iteration. If the list
expression is a predicative query, then the effect of the break instruction is to skip to the brother of the
father of the current item. Let us consider the following example:
Example:

1: owner_of_att: o,o1,o2,o3;
2: attribute: a;
 .
 .
3: .
4: for a in ATTRIBUTE[a]{@OWNER_ATT:[o1,o2,o3]} do {
5: if GetFirst(OWNER_OF_ATT[o]{OWNER_ATT:[a]})=o1
6: then { break; }
7: print(a.name);
8: }

7.4 Iteration Statements 33
where o1 owns three attributes: a1, a2 and a3 ; and o2 owns two attributes: b1 and b2. Then the first
attribute at line 5 will be a1. Since the owner of a1 is o1, the test succeeds and the break instruction is
called. Its effect will be to skip all the sons of the o1 owner and to go directly to the next owner: o2. The
program will thus print: b1, b2, …
If the list expression is not a request, then the break instruction will break the loop and will continue
with the instruction following the for-in-do instruction.

7.4.7 The continue Statement
The continue instruction can only be called inside for-do-in, while and repeat instructions.
In the while/repeat instructions, continue will skip the rest of the body of the instruction, and
cause the reevaluation of the condition expression.
If the instruction is used inside the for-do-in instruction with a request as list-expression, then its
effect will be different. Let us get a look at the followiing example:
Example:

owner_of_att: o,o1,o2,o3;
attribute: a;
 .
 .
 .
for a in ATTRIBUTE[a]{@OWNER_ATT:[o1,o2,o3]} do {
 if a=a2
 then { continue; }
 print(a.name);
}

where the context is the same as in 7.4.6. When the current item becomes a2, then the continue ins-
truction is called. The instruction will skip the rest of the body and will look for the brother of the cur-
rent element, a2, which is a3. If a2 were the last son of the owner, o1, then the for-do-in instruction
will terminate the processing the o1 ’s sons and go to the next owner: o2.
If the list expression is not a request, then the continue expression will just skip the rest of the body for
the current element and will process the next value in the list.

7.4.8 The halt Statement
The halt instruction can be called anywhere in the program where an instruction is expected. This ins-
truction stops the program. Similarly as a normal termination of the program, this instruction will not
close opened files.

7.4.9 The interrupt statement
The interrupt instruction can be called anywhere in the program where an instruction is expected.
This instruction pauses the execution of the program. The user can decide to restart it using the Conti-
nue plug-in function of the DB-MAIN case tool.

Chapter 8

Operations

Operations are statements having the form of a call to a predefined procedure/function. Because their
syntax has already been defined, we have isolated them from other statements.

8.1 Operations on Characters
function integer: d CharIsDigit (char: c)

Checks whether a character is a digit or not.
Precondition. Ø
Postcondition. d ≠ 0 if c ∈ {0,...,9} and d=0 otherwise.

function integer: d CharIsAlpha (char: c)

Checks whether a character is a letter, either lower case or upper case, but always without accent.
Precondition. Ø
Postcondition. d ≠ 0 if c ∈ {a,...,z,A,...,Z} and d=0 otherwise.

function integer: d CharIsAlphaNum (char: c)

Checks if a character is either a digit or a letter, lower or upper case, but without accent.
Precondition. Ø
Postcondition. d ≠ 0 if c ∈ {0,...,9,a,...,z,A,...,Z} and d=0 otherwise.

function string: s CharToStr (char: c)

Builds a new string containig a single specified character.
Precondition. Ø
Postcondition. s is a string composed of the c character.

function char: c’ CharToUpper (char: c)

Converts a letter to upper case.
Precondition. Ø
Postcondition. if c ∈ {a,...,z} then c’ is the respective upper case letter. All other characters are left

unchanged.

36 Chapter 8 Operations
function char: c’ CharToLower (char: c)

Converts a letter to lower case.
Precondition. Ø
Postcondition. if c ∈ {A,...,Z} then c’ is the respective lower case letter. All other characters are left

unchanged.

function char: c AscToChar (integer: d)

Initializes a character variable with a character whose ASCII code is specified.
Precondition. Ø
Postcondition. Character c has the ASCII code: d.
on error: c = ’^0^’.

function integer: d CharToAsc (char: c)

Retrieves the ASCII code of a character.
Precondition. Ø
Postcondition. d is the ASCII code of the character c.

8.2 Operations on Strings
In order to simplify the notations, the definitions below use the following conventions:
• Let s denote a string and d a positive number. We note:

• sd the dth character of the string s

• sd→ the suffix of the string s starting at the position d (included)

• sd→d+n the substring comprised between positions d and d+n where n is a positive number such
that d+n does not exceed the length of the string.

• Let us remember that the first character of a string is placed at the position 0, and thus if n is the
length of s, the last character is placed at the position n-1.

The following operations are safe with respect to two criteria:
• The program can never write a character outside strings.
• The program can never place the null character inside a string1.
This is a valuable guaranty against frequent bugs that C and Pascal programmers certainly know.

function string: s StrBuild (integer: d)

Builds a new string made of d spaces.
Precondition. d ≥ 0 and d ≤ MAX_STRING
Postcondition. s is a string composed of d space characters (’ ’).
on error: s is the empty string.

function string: s StrConcat (string: s1, string: s2)

Concatenate two strings.
Precondition. Ø
Postcondition. This function appends the string s2 at the end of s1 and the result is stored in s. The

length of the resulting string is StrLength(s1)+StrLength(s2). The infix operator "+"
can also be used in place of the StrConcat function.

1. By convention, the null character ends strings. Therefore such a possibility is troubling the memory manager.

8.2 Operations on Strings 37
function integer: r StrFindChar (string: s, integer: d, char: c)

Looks for the first appearance of a specific character in a string suffix.
Precondition. 0 ≤ d < StrLength(s).
Postcondition. If r ≥ 0 then sr = c and ∀ i, d ≤ i < r: si ≠ c. Otherwise if r = -1 then ∀ i, d ≤ i < Str-

Length(s): si ≠ c.
on error: r = -1.

function integer: r StrFindSubStr (string: s, integer: d, string: t)

Looks for the first appearnace of a string in the suffix of another string.
Precondition. 0 ≤ d < StrLength(s).
Postcondition. If r ≥ 0 then t is a prefix of sd+r→. Otherwise if r = -1 then ∀ i ≥ 0, t never is a prefix

of sd+i→.
on error: r = -1

function char: c StrGetChar (string: s, integer: d)

Returns the d-th character of the string.
Precondition. 0 ≤ d < StrLength(s).
Postcondition. c = sd.
on error: c = ’^0^’

function string: r StrGetSubStr (string: s, integer: d, integer: n)

Returns the substring of a starting at position d, of length n.
Precondition. 0 ≤ d < StrLength(s) ∧ 0 ≤ n ≤ StrLength(s)-d
Postcondition. r = sd→d+n

on error: if d < 0 then d ← 0; if d ≥ StrLength (s) then d ← StrLength(s) ; if n < 0 then n ← 0 ; if n
> StrLength (s)-d then the function will consider that n-StrLength(s)+d space characters are added at
the end of the string s.

function string: s StrItos (integer: d)

Converts the integer d into the string s.
Precondition. Ø
Postcondition. s is a string containing the ASCII representation of d.

function integer: d StrLength (string: s)

Returns the length of a string.
Precondition. Ø
Postcondition. d is the length of the string s.

function string: s’ StrSetChar (string: s, integer: d, char: c)

Replaces the d-th character of the string s by character c.
Precondition. 0 ≤ d < StrLength (s) and c ≠ ’^0^’.
Postcondition. ∀ i ∈ {0 ... StrLength (s)-1} \ {d}: s’i = si and s’d = c, where s’ stands for the state of

the string after the execution of the function.
on error: s’ = s.

function integer: d StrStoi (string: s)

38 Chapter 8 Operations
Converts a string containing the representation of an integer number into that integer number.
Precondition. 1) The number represented by s is a number between INT_MIN and INT_MAX. 2)

The string must match this regular expression: [\t]*[+-]?[0..9]+ (see appendix F for
more details about regular expressions). The string may start with spaces or tabular
characters but must end with a number. A number may have a sign (+ or -) and must
have at least one digit.

Postcondition. Converts the longest prefix of s satisfying the above regular expression to an integer
d. Space and tabular characters at the beginning of s are omitted.

on error: If the value d is outside the integer range, then the result d is undefined. If the string s does
not match the regular expression, then d = 0.

function string: s’ StrToLower (string: s)

Converts all the letters of a string to lower case.
Precondition. Ø
Postcondition. All the characters c ∈ {A,...,Z} in the string s are replaced by their corresponding

lower case letters, the result is stored in s’. No other characters are changed.

function string: s’ StrToUpper (string: s)

Converts all the letters of a string to upper case.
Precondition. Ø
Postcondition. All the characters c ∈ {a,...,z} in the string s are replaced by their corresponding

upper case letters, the result is stored in s’. No other characters are changed.

function integer StrCmp (string: s1, string: s2)

Compares two strings and tells which one comes first in lexico-graphical order.
Precondition. Ø
Postcondition. Returns 0 if s1 = s2, 1 if s1>s2 and -1 otherwise.

function integer StrCmpLU (string: s1, string: s2)

Compares two strings and tells which one comes first in alphabetical order. Note that letters with
accents are not considered equivalent to the basic letter.
Precondition. Ø
Postcondition. Returns 0 if s1’ = s2’, 1 if s1’>s2’ and -1 otherwise, where si’ = StrToUpper(si) and i

∈ {1,2}.

function integer StrIsInteger (string: s)

Checks whether a string contains figures only or not.
Precondition. Ø
Postcondition. Returns 1 if CharIsDigit(si) = 1 ∀ 0 ≤ i ≤ StrLength(s)-1 and 0 otherwise.

See also MakeChoice and MakeChoiceLU in chapter 10 (pages 57).

8.3 Operations on Lists and Cursors
procedure AddFirst (list: l1, any: e)

Adds a new element at the begining f a list.
Precondition. Ø
Postcondition. After evaluation of the expression e, the result is added to the list l1 at the first posi-

tion. If the expression is a list, this list is shared by l1.

8.4 Operations on Files 39
procedure AddLast (list: l1, any: e)

Adds a new element at the end of a list.
Precondition. Ø
Postcondition. After evaluation of the expression e, the result is added to the list l1 at the last posi-

tion. If the expression is a list, this list is shared by l1.

function any: r GetFirst (list: l)

Retrieves the first element of a list.
Precondition. l is a non-empty list
Postcondition. r is the first element of the list l. Of course, if the first element of a the list is a list,

then the result is not a copy of it but shares it.
on error: the program is halted.

function any: r GetLast (list: l)

Retrieves the last element of a list.
Precondition. l is a non-empty list
Postcondition. r is the last element of the list l. Of course, if the last element of a the list is a list,

then the result is not a copy of it but shares it.
on error: the program is halted.

function integer : n Length (list: l)

Return the length of a list.
Precondition. Ø
Postcondition. n is the number of elements found in the list l.

function cursor: c member (list: l, any : m)

Checks whether a value m is stored in the list l.
Precondition. Ø
Postcondition. if the element m occurs in the list l, then the cursor c points to this element. If the

elements occurs more than once, then c points to the first occurrence. Elements that
have a type different of the element m are omitted. If m does not belong to the list
then the cursor c is void.

8.4 Operations on Files
function file OpenFile (string: FileName, integer: Mode)

Opens a file for reading or writing.
Precondition. FileName is the name of a file. Mode is an integer constant among: _W for the write

mode and _R for the read mode and _A for the append mode.
Postcondition. Depending on the value of Mode:
− _W : If the file FileName exists then it is destroyed and the result is a handle to a new file opened

for writing only. If FileName is not a valid name, the result is void and the error register is set to
ERR_FILE_OPEN.

− _R : If the file FileName does not exist, the result is the value void and the error register
is set to ERR_FILE_OPEN. Otherwise the result is a handle to the file opened for rea-

40 Chapter 8 Operations
ding. The current position is either the first character of the file or the end of file if the
file is empty.

− _A : If the file FileName exists then the function returns a handle to this file opened for
writing, the cursor being placed at the end-of-file. Otherwise, the file is created and the
function behaves like the mode was _W.

procedure CloseFile (file: f)

Closes an opened file. This function must be called for each opened file before a program termina-
tes.
Precondition. f denotes an handle to a file opened with the instruction OpenFile.
Postcondition. The file is closed, and the value of f is undefined.
on error: The error register is set to ERR_FILE_CLOSE.

procedure printf (file: f, any: value)

Writes a string, a chart, an integher or a list of these types in a file.
Precondition. f denotes a file opened for writing and value is any expression among types string,

char, integer, list.
Postcondition. value is written on the file denoted by f. If the type of value is list then all the values

found in this list are written on the file surrounded by the string constants
LEFT,RIGHT and separated by the string constant COMMA2 (cfr. function Set-
PrintList page 41 for more details about these constants). Values not belonging to
types string, char, integer, list are skipped.

on error: The behavior is undefined.
Let us remark that very deep and recursive lists perturb this procedure.

procedure print (any: value)

The procedure print bahaves like printf, but only requires the value argument, and writes the
value on the console.

function any readf (file: f, integer: t)

Reads a value of a specific type in a file.
Precondition. f denotes a file opened for reading and t is an integer constant denoting the type of

value to be read in the file. Following constants can be used: _integer, _char,
_string.

Postcondition. Upon the value of t, the instruction will behave like this:
− _integer : The longest sequence of decimal digits optionally preceded by - or + is read

from the current position. At the end, the current position is either the first character
after the sequence or the end of file. If current position is either the end of file or is not
indicating a number, then 0 is returned. If the sequence denotes a number outside the
range [INT_MIN…INT_MAX] then the instruction returns a random integer.

− _string : The longest sequence of characters before either the end of file or the first cha-
racter ’ \ n’ or the MAX_BUFFERth character after the current position. If the current
position is the end of file or is indicating the end of line character, then the empty string
is returned. The current position becomes either the end of file or the first character after
the sequence.

− _char : The character under the current position is returned. If the end of file is reached,
the ASCII code 0 is returned.

2. These constants are internal and are not visible.

8.4 Operations on Files 41
function any readf (finteger: t)

The function read behaves like readf except that characters are read from the console.

function integer eof (file: f)

Checks whether the end of file is reached.
Precondition. The file f is opened.
Postcondition. eof returns 1 if the end of file is reached and 0 otherwise.

function integer neof (file: f)

Checks that the end of file has not been reached.
Precondition. The file f is opened.
Postcondition. neof returns 0 if the end of file is reached and 1 otherwise.

For files opened for writing, the function always returns 0. C programmers will note that the function
neof is quite different of the function feof in this language.
Some other instructions are discussed here although they have no concern with the type file.

procedure rename (string: OldName, string: NewName)

Renames or moves a file.
Precondition. OldName is the name of an existing file. NewName is a file name that does not yet

exist. Both expressions must denote files on a same physical device.
Postcondition. The file OldName is renamed NewName. If paths are different, then this instruction

will move the file.
on error: the error register is set to ERR_ERROR.

procedure delete (string: filename)

Deletes a file.
Precondition. filename is the name of an existing file.
Postcondition. The file filename is deleted.
on error: the error register is set to one of the following values: ERR_PERMISSION_DENIED,
ERR_PATH_NOT_FOUND.

function integer ExistFile (string: filename)

Checks whether a file exists with the specified name.
Precondition. filename is a valid file name for DOS. The file may not exist.
Postcondition. The function returns 1 if the file exists. Otherwise, error codes ERR_PERMIS-

SION_DENIED and ERR_PATH_NOT_FOUND can be returned. The error regis-
ter is not modified.

procedure SetPrintList (string: left, string: right, string: comma)

Configures the formating of printings in a file or in the console.
Precondition. left, right and comma are strings with no more than MAX_DELIM characters.

Strings can be empty.
Postcondition. Strings left, right, comma are put into constants LEFT, RIGHT and COMMA.

The next example illustrates the use of the previous instructions.
Example:

42 Chapter 8 Operations
file: f;
begin
 f:=OpenFile("c: \\ tmp \\ foo.txt",_W);
 SetPrintList("(",")",",");
 printf(f,[1,[1,2,3],4,’ \ n’]);
 SetPrintList(" \ /*","*/ \ n"," \ n");
 printf(f,["line comment 1","line comment 2","line comment 3"]);
 CloseFile(f);
end

The program will print the following text in the file foo.txt:

(1,(1,2,3),4)
/*line comment 1
line comment 2
line comment 3*/

8.5 Interface Operations
The following operations are illustrated with screen snapshots. Although the manual is written in
English, my operating system has a French configuration, and therefore dialog boxes are a mix of
French and English texts. French texts are system dependent messages and English are user’s para-
meters defined below.

function string DialogBox (string : t, string : m, integer: s, string: d)

Shows a dialog box to allow the user to enter some text.
Precondition. Ø
Postcondition. A dialog box like the one shown in figure 8.1 is created with:
− t: the title (<TITLE> in the figure)
− m: the message (<MESSAGE> in the figure)
− s: the maximum length of the input area in characters
− d: the default string displayed in the input area (<DEFAULT VALUE> in the figure)
If the user clicks on the CANCEL button, the result is the empty string and the error register is set to
ERR_CANCEL.

Figure 8.1 - A DialogBox Window.

function string BrowsePrint (string : t, string: e, string: d)

Shows a dialog box to allow the user to choose a filename and a place for saving a file.
Precondition. Ø
Postcondition. A dialog box like the one shown in figure 8.2 is created with:
− t: the title (<TITLE> in the figure 8.2).
− e: suggested extensions. This string is formatted as a list of pairs "name_1|ext_1|name_2|

ext_2|...|name_n|ext_n" where ext_i is an extension ("*.v2" for instance), and
name_i is its associated name ("Voyager 2 program" for instance).

8.5 Interface Operations 43
− d: the initial directory to display ("C:\VOYAGER" in the figure 8.2).
If the user clicks on the CANCEL button, the result is the empty string and the error register is set to
ERR_CANCEL. Otherwise, the result is the name of the selected file (with its path). The user may
either choose an existing file or type a new name
.

Figure 8.2 - A File Browsing Window.

function string BrowseRead (string : t, string : m, string: e)

Shows a dialog box to allow the user to choose a file to open.
Precondition. Ø
Postcondition. A dialog box as the one shown in figure 8.2 is created with:
− t: the title (<TITLE> in the figure 8.2).
− e: suggested extensions. This string is formatted as a list of pairs "name_1|ext_1|name_2|

ext_2|...|name_n|ext_n" where ext_i is an extension ("*.v2" for instance), and
name_i is its associated name ("Voyager 2 program" for instance).

− d: the initial directory to display ("C:\VOYAGER" in the figure 8.2).
If the user clicks on the CANCEL button, the result is the empty string and the error register is set to
ERR_CANCEL. Otherwise, the result is the name of the selected file (with its path). Although file
names are greyed, the user can type a new file name.

procedure MessageBox (string : t, string : m)

Displays a textual message for the user.
Precondition. Ø
Postcondition. A messge box like the one shown in the figure 8.3 is displayed with:
− t: the title (<TITLE> in the figure)
− m: the message (<MESSAGE> in the figure)
−

Figure 8.3 - A Message Box.

44 Chapter 8 Operations
function integer: r Choice (string : t, list : L, integer: s, integer: m)

Precondition. Ø
Postcondition. A dialog box is shown to allow the user to choose one item among several ones.
− t: the title
− L: the list of possible items. The elements of L which do not match the string type will be omit-

ted.
− s: the listbox will be sorted if s ≠ 0.
− m: if not 0, an item must be selected before the user can click on the OK button.
If the user clicks on the CANCEL button, the result is -2. If the choice is not mandatory (m =
FALSE) and if no item is selected, then the result is -1. Otherwise, the result is the index of the string
in the list (the first index is 0). (See the example in figure 8.4).

Example:

Choice("Choose your favorite author",
 ["Malet, Léo",
 "Steeman, Stanislas-André",
 "Ray, Jean", "Simenon, Georges",
 "Mayence, Bruce",
 "Tabachnik, Maud"],
 TRUE,
 TRUE
);

Figure 8.4 - A Choice Dialog.

8.6 Time Operations
function integer GetDay ()

Gets the current day.
Precondition. Ø
Postcondition. returns the day (1-31) of the current date.

function integer GetHour ()

Gets the hour of the current time.

8.7 Flag Operations 45
Precondition. Ø
Postcondition. returns the hours (0-23) of the current time.

function integer GetMin ()

Gets the minutes of the current time.
Precondition. Ø
Postcondition. returns the minutes (0-59) of the current time.

function integer GetMonth ()

Gets the current month.
Precondition. Ø
Postcondition. returns the month (1-12) of the current date.

function integer GetSec ()

Gets the seconds of the current time.
Precondition. Ø
Postcondition. returns the seconds (0-59) of the current time.

function integer GetWeekDay ()

gets the day of the week of the current day.
Precondition. Ø
Postcondition. returns the day in the week (1-7) of the current date.

function integer GetYear ()

Gets the current year.
Precondition. Ø
Postcondition. returns the year of the current date.

function integer GetYearDay ()

Gets the number of the current day in the current year.
Precondition. Ø
Postcondition. returns the day in the year (1-365) of the current date.

8.7 Flag Operations
Each object of the repository of DB-MAIN contains an array of 32 boolean flags which are used for
many purposes. The following functions can be used to get the value and set the value of these flags.

function integer: r GetFlag (integer: d, integer: p)

Gets the boolean value of a particular flag.
Precondition. Ø
Postcondition. Returns the bit stored at position p in the integer d. The value p is a binary mask to

access the bit: to access the bit i of d, the mask should be the ith power of 2. For ins-
tance, to access flag 0, p should be 1. To access bit 5, p should be 32. Note that seve-
ral bits can be checked at the same time: by example, bits 2 and 3 can be checked
with p = 2² + 2³ = 12

function integer: r SetFlag (integer: d, integer: p, integer: v)

46 Chapter 8 Operations
Changes the value of a particular flag.
Precondition. Ø
Postcondition. a new array of flags is returned where the bits accessible through mask p are set to 1

if v is non-zero, or set to 0 if v is 0. All the other bits of the array have the same
value as the bit at the same position in array d. The mask p should be build in the
same way as explained in the operation GetFlag(d,p). For instance, if d is the array
of flag 001...0011010 (32 bits, shortened for readibility), SetFlag(d,6,1) will return
the result 001...0011110.

8.8 General Operations
function integer GetPosX (user_view: v, generic_object: g)

Precondition. g ≠ Ø
Postcondition. Returns the X coordinate, in 1/1000 of millimeter, of the generic object g in the user

view v.

function integer GetPosY (user_view: v, generic_object: g)

Precondition. g ≠ Ø
Postcondition. Returns the Y coordinate, in 1/1000 of millimeter, of the generic object g in the user

view v.

function integer GetColor (user_view: v, generic_object: g)

Precondition. g ≠ Ø
Postcondition. Returns the colour of the generic object g in the user view v.

procedure UpdatePosX (user_view: v, generic_object: g, integer: x)

Precondition. g ≠ Ø
Postcondition. Updates the X coordinate of the generic object g in the user view v. The x value is

the new position in 1/1000 of millimeter from the left border of the drawing sheet.

procedure UpdatePosY (user_view: v, generic_object: g, integer: y)

Precondition. g ≠ Ø
Postcondition. Updates the Y coordinate of the generic object g in the user view v. The y value is

the new position in 1/1000 of millimeter from the left border of the drawing sheet.

procedure UpdateColor (user_view: v, generic_object: g, integer: c)

Precondition. g ≠ Ø
Postcondition. Updates the color of the generic object g in the user view v. The c value is the new

color, its interpretation depends on the systemm configuration, so it cannot be
detailed here; the user should preferably use values previously obtained with the
function GetColor().

function integer GetOID (generic_object: g)

Precondition. g ≠ Ø
Postcondition. Returns the technical identifier of the generic object. This value is unique and sta-

ble.

procedure call (string: s)

Precondition. s denotes a Windows or DOS application with optional arguments.

8.8 General Operations 47
Postcondition. The program s is started and the Voyager 2 program continues its execution.
on error: The error register is set to the constant ERR_CALL.

procedure CallSync (string: s)

Precondition. s denotes a Windows or DOS application with optional arguments.
Postcondition. The program s is executed, the Voyager 2 program waits for s to be finished before

continuing its execution.
on error: The error register is set to the constant ERR_CALL.

procedure ClearScreen ()

Precondition. Ø
Postcondition. The screen (Voyager console) is cleared.

function any GetCurrentObject ()

Precondition. Ø
Postcondition. Returns the currently selected object. If no object, or many objects, are selected,

then the function returns Void(GENERIC_OBJECT).

function schema GetCurrentSchema ()

Precondition. Ø
Postcondition. Returns the reference of the current schema. If there no current schema (the active

window does not show a schema), the function returns the value void.

function integer: e GetError ()

Precondition. Ø
Postcondition. Returns the value of the error register. The call puts the value 0 in the error register.

function string: s GetOxoPath ()

Precondition. Ø
Postcondition. Returns a string with the path of the "oxo" file that contains the current program.

function integer: r GetType (any: v)

Precondition. Ø
Postcondition. This function returns the value denoting the accurate type of the value passed as

argument. For instance, if the argument is a variable defined as ent_rel_type, then
the possible results are ENTITY_TYPE and REL_TYPE. This function is useful for
processing values of various types coming from heterogeneous lists.

function integer: r IsNoVoid (any: v)

Precondition. Ø
Postcondition. Returns not IsVoid(v). See function IsVoid for more details.

function integer: r IsVoid (any: v)

Precondition. Ø
Postcondition. Returns TRUE if the argument is null. If the type of the argument is list or string the

result is always FALSE. For integers and characters, this predicate is true if the
value is the integer 0 or the character ’^0^’.

function any: o Void (integer: t)

48 Chapter 8 Operations
Precondition. The integer constant t denotes a valid type of the language, except the types: list and
string.

Postcondition. o is the special value void of the type denoted by t.
on error: The program halts.

procedure Transfo (schema: s, string: t)

Precondition. Ø
Postcondition. If the string t contains a valid global transformation script, it is applied to the

schema s. Otherwise, the schema s is unchanged and the error register is set to the
constant ERR_BAD_TRANSFO.

on error: The error register is set to the constant ERR_BAD_TRANSFO
The script is used by the advanced global transformation assistant of the DB-MAIN CASE tool. For
ease of writing such a script, it is recommended to use that assistant and to copy the script from the
assistant to the clipboard, then to paste it in the V2 source program (some characters may have to be
escaped with "\" by hand).
A small example of the use of an advanced global transformation script follows:

schema : sch;
integer : err;

begin
 sch := GetCurrentSchema();
 if IsNoVoid(sch) then {
 Transfo(sch,"RT_into_ET(ROLE_per_RT(3 N) or ATT_per_RT(1 N))");
 err := GetError();
 if err=ERR_BAD_TRANSFO then {
 MessageBox("TestTrsf error","Invalid transformation script");
 }
 }
end

8.9 Blackox
8.9.1 BlackBoxP

procedure BlackBoxP (integer: c, ...)

The general format of the BlackBoxP procedure. The value of the first parameter determines the for-
mat of the next ones. Various correct values of c and the corresponding parameters are listed below.
Precondition. c is the identifying code of a function of DB-MAIN. The "..." denotes the arguments

of the procedure. This procedure is described in the help file of DB-MAIN.
Postcondition. Postconditions depend on c

procedure BlackBoxP (BBP_NEW_LOG, string: file_name, schema: sch)

Precondition. Ø
Postcondition. The file file_name contains the log file of the schema sch.

procedure BlackBoxP (BBP_ADD_POINT_LOG, string: check_point, schema: sch)

Precondition. Ø
Postcondition. Adds the check point check_point in the log file of schema sch.

procedure BlackBoxP (BBP_TRACE, integer: on_off, schema: sch)

Precondition. Ø

8.9 Blackox 49
Postcondition. Sets the trace of schema sch to on_off.

procedure BlackBoxP (BBP_REPLAY_AUTO, schema: sch, string: file_name, integer: r)

Precondition. Ø
Postcondition. Replays the file_name log file on sch (the errors are displayed if r = 1).

procedure BlackBoxP (BBP_DISPLAY_REF_VAR, text: fl, System: sys, integer: var_id)

Precondition. Ø
Postcondition. ???.

procedure BlackBoxP (BBP_SAVE_PS_CONSOLE, string: file_name)

Precondition. Ø
Postcondition. Saves the Voyager console in file_name.

procedure BlackBoxP (BBP_INTEGRATE_SCHEMA, schema: slave_sch, schema: master_sch,
string: file_name)

Precondition. Ø
Postcondition. Integrates slave_sch into master_sch and stores the integration report into

file_name.

procedure BlackBoxP (BBP_COPY, list: l)

Precondition. Ø
Postcondition. Copies the list of objects into the clipboard.

procedure BlackBoxP (BBP_PASTE, schema: sch)

Precondition. Ø
Postcondition. Pastes the content of the clipboard into the schema.

procedure BlackBoxP (BBP_DBL_CLICK, schema: sch, generic_object: go)

Precondition. Ø
Postcondition. Simulates a double click on go in schema sch.

procedure BlackBoxP (BBP_OPEN_WIN, schema : sch)

Precondition. Ø
Postcondition. Opens a window for showing schema sch.

procedure BlackBoxP (BBP_CLOSE_WIN, schema : sch)

Precondition. Ø
Postcondition. Closes the window of schema sch.

procedure BlackBoxP (BBP_MARK_SELECTED, schema : sch)

Precondition. Ø
Postcondition. Marks the selected objects of schema sch.

procedure BlackBoxP (BBP_DELETE_SELECTED, schema : sch)

Precondition. Ø
Postcondition. Deletes the selected objects of schema sch.

50 Chapter 8 Operations
procedure BlackBoxP (BBP_CENTER_SELECTED, schema : sch)

Precondition. Ø
Postcondition. Places the selected object of schema sch in the center of the graphical or textual

view.

procedure BlackBoxP (BBP_SELECT_MARKED, schema : sch)

Precondition. Ø
Postcondition. Selects the marked object of schema sch.

procedure BlackBoxP (BBP_CREATE_VIEW, schema : sch, string: name)

Precondition. Ø
Postcondition. Defines the view name on the marked objects of schema sch.

procedure BlackBoxP (BBP_GENERATE_VIEW, schema : sch, string: name, integer: ssatt, integer:
proc, integer: rel)

Precondition. Ø
Postcondition. Generates the view name of schema sch with the sub-attributes (if ssatt = 1), the

processing units (if proc = 1) and the relations (if rel = 1).

procedure BlackBoxP (BBP_DELETE_VIEW, schema : sch, string: name)

Precondition. Ø
Postcondition. Deletes the view name of schema sch.

procedure BlackBoxP (BBP_COPY_VIEW, schema : sch, string: name, string: cname)

Precondition. Ø
Postcondition. Copies the view name in the new view cname of schema sch.

procedure BlackBoxP (BBP_RENAME_VIEW, schema : sch, string: name, string: rname)

Precondition. Ø
Postcondition. Renames the view name of schema sch into rname.

procedure BlackBoxP (BBP_REFRESH_WIN, schema : sch)

Precondition. Ø
Postcondition. Refreshs the window containing schema sch.

8.9.2 BlackBoxF
The general format of the BlackBoxF function. The value of the first parameter determines the format
of the next ones. Various correct values of c and the corresponding parameters are listed below.

function any BlackBoxF (integer: c, ...)

Precondition. c denotes a unique code that must correspond to some defined operation. The "..."
denotes the arguments of the procedure. This procedure is described in the help file
of DB-MAIN.

Postcondition. Postconditions depend on c

function integer BlackBoxF (BBF_SCHEMACOPY, schema: sch_org, schema: sch_targ)

Precondition. sch_targ is an empty schema.
Postcondition. sch_org is copied into sch_targ.

8.9 Blackox 51
Returns 1 if the copy succeed, 0 otherwise

function integer BlackBoxF (BBF_IS_VALID_GR_COMPONENT, group: gr)

Precondition. Ø
Postcondition. Returns 0 if the group is valid.

< 0, if there is an error.
> 0 = number (+1) of the element that couldn’t be part of the group.

function integer BlackBoxF (BBF_IS_VALID_IDENTIFIER_GR, group: gr)

Precondition. Ø
Postcondition. Returns 0 if the elements of gr are valid elements of an identifier.

Otherwise returns <0.

function integer BlackBoxF (BBF_IS_VALID_EXISTENCE_GR, group: gr)

Precondition. Ø
Postcondition. Returns 0, if gr is made up of valid components for an existence group.

Otherwise, returns <0

function list BlackBoxF (BBF_GET_DECLARED_VAR, document: doc)

Precondition. Ø
Postcondition. Returns the list ’[var_id, var_name, level],...’ of the variables declared in the

COBOL source code ’doc’.

function list BlackBoxF (BBF_DIR, string: path)

Precondition. Ø
Postcondition. Returns the list of files of path. path can contain wildcards (à la DOS).

function schema BlackBoxF (BBF_IMPORT_ISL, string: sch_name, string: sch_version, string:
file_name)

Precondition. file_name is an ".isl" file that contains the schema "<sch_name>/<sch_version>".
Postcondition. Returns the imported schema if the import succeed. Otherwise, returns Void .

function integer BlackBoxF (BBF_ET_TO_ATT, integer: elem, entity_type: et)

Precondition. Ø
Postcondition. Transforms the entity type et into an attribute.

Returns 1 if the transformation succeed, 0 otherwise.
If elem = 0, the newly created objects have default names, otherwise a dialog box
asks for the name of the newly created objects.

function integer BlackBoxF (BBF_ATMUL_TO_LIST, integer: elem, attribute: att)

Precondition. Ø
Postcondition. Transforms att, if multivalued, into a list of single-valued attributes (= instantiation).

Returns 1 if the transformation succeed, 0 otherwise.
If elem = 0, the newly created objects have default names, otherwise a dialog box
asks for the name of the newly created objects.

function integer BlackBoxF (BBF_RT_TO_ATT, integer: elem, rel_type: rt)

52 Chapter 8 Operations
Precondition. Ø
Postcondition. Transforms rt into a reference attribute (foreign key).

Returns 1 if the transformation succeed, 0 otherwise.
If elem = 0, the newly created objects have default names, otherwise a dialog box
asks for the name of the newly created objects.

function integer BlackBoxF (BBF_ISA_TO_RT, integer: elem, entity_type: et)

Precondition. Ø
Postcondition. Transforms the is-a relation (for which et is a super-type) into relationship type.

Returns 1 if the transformation succeeds, 0 otherwise.
If elem = 0, the newly created objects have default names, otherwise a dialog box
asks for the name of the newly created objects.

function integer BlackBoxF (BBF_ATT_TO_ET_INST, integer: elem, attribute: att)

Precondition. Ø
Precondition. Transforms the attribute att into an entity type using the instance representation of

duplicate values of attributes.
Returns 1 if the transformation succeeds, 0 otherwise.
If elem = 0, the newly created objects have default names, otherwise a dialog box
asks for the name of the newly created objects.

function integer BlackBoxF (BBF_ATT_TO_ET_VAL, integer: elem, attribute: att)

Precondition. Ø
Postcondition. Transforms the attribute att into an entity type using distinct attribute values (value

representation).
Returns 1 if the transformation succeeds, 0 otherwise.
If elem = 0, the newly created objects have default names, otherwise a dialog box
asks for the name of the newly created objects.

function proc_unit BlackBoxF (BBF_FIND_PU_BY_NAME, owner_of_proc_unit: opu, string: s)

Precondition. Ø
Postcondition. Searchs the proc_unit that has the name s in the owner_of_proc_unit opu.

Returns the proc_unit if the search succeeds, Void otherwise.

Chapter 9

Functions and Procedures

9.1 Definition
Functions and procedures are program chunks that are identified by a name and which can be invoked
from other procedures or functions, or from the main program. The scope of a function or a procedure
is the whole program. The function or procedure definitions must be placed between the last global
variable definition and the main program. Functions and procedures can have local variables (their
scope is restricted to the body of the function) and return a value (the result) of any type (except func-
tion or procedure).
The syntax of a function definition is the following:
 function <type> <identifier> (<arg>,< arg>,...)
 [explain (* ... *)]
 <definition-line>
 ...
 {
 <instruction>
 ...
 }

The syntax of a procedure definition is the following:
 procedure <identifier> (<arg>,< arg>,...)
 [explain (* ... *)]
 <definition-line>
 ...
 {
 <instruction>
 ...
 }

In these definitions, <identifier> is the name of the function, <type> is the type of the result of the func-
tion, <arg> is an argument of the function, <definition-line> is a variable declaration as presented in
Chapter 3 except that the scope of the variable is the body of the function and not the whole program,
and <instruction> is the series of instructions to be executed when the function is invoked.
The flow of the executed instructions will stop either after the execution of the last instruction, or when
a return instruction is encountered. In a function, the return instruction should be followed by an
expression, of the same type as the function, whose result is the result of the function. If the function
ends without encountering a return instruction, its result will be undefined and the execution of the pro-
gram will probably be aborted a bit further.

54 Chapter 9 Functions and Procedures
When a function or procedure ends, all the local variables disappear from the environment and the
memory is cleared. The eecution flow is then directed to the instruction following the function or proce-
dure call.
All the arguments, except lists, are passed by value. That is to say that, at each call, the parameters are
in fact a copy of the arguments, and modififying the value of these parameters has no influence on the
value of the argument in the calling function or procedure. But:
1. lists are passed by reference. This means that all the operations performed on a list parameter are

also performed on the argument, every modification of the list inside the procedure or function will
affect the list in the calling procedure or function.

2. when arguments are references to objects, although this argument is passed by value, the behavior of
the program is the same as if the value was passed by reference. Indeed, only the reference is passed
by value, not the whole object which is stored in the repository.

Note that a local list returned by a function will not be destroyed when the function ends, as explained
before, because lists are managed by a garbage collector which sees that the list is used by both a local
variable and the program calling the function. For example, let us suppose that l is a local list variable,
and its value before the call to the return instruction is [1,2,3]. This list will still valid after the return
instruction although the local variables should be destroyed when the function exits.
Finally, there is no implicit type casting of the values passed to a procedure or function to the type of
the arguments specified in the signature of the procedure or function. This job must be done by the pro-
grammer. For instance, if a function expects a data_object as first argument, it is forbidden to pass
expressions of another type (even entity_type) that is a subtype.
The following program illustrates the use of functions and procedures to print lists of factorials:

function integer fact(integer: n)
 integer: i, f;
{ f:=1;
 for i in [1..n] do {
 f:=f*i;
 };
 return f;
}

procedure PrintFact(integer: i, integer: j)
 integer: z;
 list: l;
{ for z in [i..j] do {
 l:=l++[fact(z)];
 };
 print(l);
}

begin
 SetPrintList("","",",");
 PrintFact(2,5);
end

The export and explain clauses that appear in the syntax are outside the scope of this chapter and will
respectively be described in 17.2 and 17.5.

9.2 Recursiveness
The scope of a function is the whole program, including its own body. So a function can call itself. This
principle is called recursiveness. For instance the factorial function shown above could be shortened in
the following way:

9.2 Recursiveness 55
function integer fact(integer: n){
 if n=0
 then { return 1; }
 else { return n*fact(n-1); };
}

In the same way, the PrintFact procedure could be rewritten as:

procedure PrintFact(integer: i, integer: j){
 if i<j
 then {
 print(fact(i));
 print(’,’);
 PrintFact(i+1,j);
 } else {
 print(fact(i));
 };
}

Chapter 10

Lexical Analyzer

Because strings are passed by value to functions and procedures in Voyager 2 and because characters
are read one by one from files, writing an efficient lexical analyzers in Voyager 2 with the general
purpose functions presented in the previous chapter is a real challenge. Since text file analysis is a com-
mon task, Voyager includes some specificic functions.
All these functions use the same input stream that is initialized by the function SetParser. The input
stream can be either a file or a string. Because a stream is a little bit more sophisticated than a normal
file (OpenFile), usual functions for files cannot be used with this input stream.

procedure SetParser (τ : sf)

Initialization of the input strem.
Precondition. τ is either the string type or the file type. This instruction specifies which stream will
be used by the subsequent functions of the lexical library. If the argument is a string, then all the
lexical functions will read characters from a "virtual" file initialized with the argument. Otherwise,
if it is a file, characters are read from the file itself.
Postcondition. The input stream is initialized.

function string : r GetTokenWhile (string : s)

This function returns the longest string from the input stream made up of characters in s.
Precondition. The input stream is initialized. The argument must be a literal string: the value of s
must be known at compilation time. This string denotes a pattern that defines the behaviour of the
lexical analyzer. The pattern specifies a range of characters. This range may be defined either in
extension (with a range of characters) or in expansion (with a list of characters). The first character
of the pattern is always interpreted literaly. For the other ones, the pattern is expanded in this way:
for each occurence of a range "α - β" where α, β denote any character, this substring is replaced in
the pattern by the set of characters γ: α ≤ γ ≤ β. Thus the following pattern : "-a-d0-4" is equivalent
to the string: "-abcd01234".

Postcondition. Let (αi)
n
1

 be the characters present in the input stream of the lexical library. The

result of this function is the string (αi)
m
1

 where 0 ≤ m ≤ n and ∀ i ∈ 1..m: αi ∈ s and if m < n then

αm+1 ∉ s. After the call, the input stream is replaced by (αi)
n

m 1+
.

58 Chapter 10 Lexical Analyzer
function string : r GetTokenUntil (string : s)

This function returns the longest string from the input stream made up of characters not belonging to
s.
Precondition. The input stream is initialized. The argument must be a literal string: the value of s
must be known at compilation time. This string denotes a pattern that defines the behaviour of the
lexical analyzer. The pattern specifies a range of characters. This range may be defined either in
extension (with a range of characters) or in expansion (with a list of characters). The first character
of the pattern is always interpreted literaly. For the other ones, the pattern is expanded in this way:
for each occurence of a range "α - β" where α, β denote any character, this substring is replaced in
the pattern by the set of characters γ: α ≤ γ ≤ β. Thus the following pattern : "-a-d0-4" is equivalent
to the string: "-abcd01234".

Postcondition. Let (αi)
n
1
 be the characters present in the input stream of the lexical library. The

result of this function is the string (αi)
m
1

 where 0 ≤ m ≤ n and ∀ i ∈ 1..m: αi ∉ s and if m < n then

αm+1 ∈ s. After the call, the input stream is replaced by (αi)
n

m 1+
.

procedure SkipWhile (string : s)

This procedure skips, in the input stream, the longest series of characters in s.
Precondition. The input stream is initialized. The argument must be a literal string: the value of s
must be known at compilation time. This string denotes a pattern that defines the behaviour of the
lexical analyzer. The pattern specifies a range of characters. This range may be defined either in
extension (with a range of characters) or in expansion (with a list of characters). The first character
of the pattern is always interpreted literaly. For the other ones, the pattern is expanded in this way:
for each occurence of a range "α - β" where α, β denote any character, this substring is replaced in
the pattern by the set of characters γ: α ≤ γ ≤ β. Thus the following pattern : "-a-d0-4" is equivalent
to the string: "-abcd01234".

Postcondition. Let (αi)
n
1
 be the characters present in the input stream of the lexical library. After

the call, the input stream is replaced by (αi)
n

m 1+
 where m is defined as 0 ≤ m ≤ n and ∀ i ∈ 1..m:

αi ∈ P and if m < n then αm+1 ∉ P where P is the pattern.

procedure SkipUntil (string : s)

This procedure skips, in the input stream, the longest series of characters not belonging to s.
Precondition. The input stream is initialized. The argument must be a literal string: the value of s
must be known at compilation time. This string denotes a pattern that defines the behaviour of the
lexical analyzer. The pattern specifies a range of characters. This range may be defined either in
extension (with a range of characters) or in expansion (with a list of characters). The first character
of the pattern is always interpreted literaly. For the other ones, the pattern is expanded in this way:
for each occurence of a range "α - β" where α, β denote any character, this substring is replaced in
the pattern by the set of characters γ: α ≤ γ ≤ β. Thus the following pattern : "-a-d0-4" is equivalent
to the string: "-abcd01234".

Postcondition. Let (αi)
n
1
 be the characters present in the input stream of the lexical library. After

the call, the input stream is replaced by (αi)
n

m 1+
 where m is defined as 0 ≤ m ≤ n and ∀ i ∈ 1..m:

αi ∉ P and if m < n then αm+1 ∈ P where P is the pattern.

procedure UngetToken (string : s)

This procedure puts some characters back to the input stream.

 59
Precondition. The input stream is initialized. Let (αi)
n
1
 be the input stream. α1 is the first character.

Let (σj)
m
1

 be the sequence of letters composing s.

Postcondition. The input stream is replaced by (σj)
m
1

 o (αi)
n
1

 where o is the "append" operator for

lists.

function char : c GetChar ()

Reads one character from the input stream.
Precondition. The input stream is initialized. There is at least one character in the input stream.
Postcondition. The first character of the input stream is removed and returned.

function integer seof ()

This function checks whether the end of the input stream is reached or not.
Precondition. The input stream is initialized.
Postcondition. Let n be the value returned by this function. n = 0 if there is at least one character
left in the input stream and n ≠ 0 otherwise.

function integer nseof ()

Precondition. This function checks whether the end of the input stream is not yet reached or not.
Precondition. The input stream is initialized.
Postcondition. Let n be the value returned by this function. n ≠ 0 if there is at least one character in
the input stream and 0 otherwise.

The following functions are not really in the lexical library. They should be defined in the section 8.2.
But they are often used with lexical functions.

function integer: d MakeChoice (string: s, list: l)

This function looks for a string in a list of strings. For example, it can be used to check if a word that
was just read from the input stream is in a list of reserved words with case sensitivity ("word",
"Word" and "WORD" are different strings).
Precondition. l is a literal list of strings: this value must be known at compilation time. Let us note
(σi)1

n the list l where σ1 is the first element. All the values should be distinct.
Postcondition. if ∃ i ∈ 1..n: σi = s then d = i otherwise d = 0. The complexity of the this function
is Θ(log2 n).
on error: If one value occurs several times in the list l, then the result is random. The compiler
prints a warning message.

function integer: d MakeChoiceLU (string: s, list: l)

This function looks, case insensitively, for a string in a list of strings. For example, it can be used to
check if a word that was just read from the input stream is in a list of reserved words, without taking
care of the lower/upper case letters ("word", "Word" and "WORD" are the same strings).
Precondition. l is a literal list of strings: this value must be known at compilation time. Let us note
(σi)1

n the list l where σ1 is the first element. All the values should be distinct.
Postcondition. if ∃ i ∈ 1..n: StrCmpLU (σi,s) = 0 then d = i otherwise d = 0. This comparaison is
case insensitive. The complexity of the this function is Θ(log2 n).
on error: If one value occurs several times (case insensitive) in the list l, then the result is random.
The compiler prints a warning message.

PART II

THE REPOSITORY

Chapter 11

Repository Definition

This chapter is devoted to a presentation of the repository of DB-MAIN. The repository is composed of
objects. These objects are formally defined in chapter 12. The present chapter gives an overview as well
as a semantic description of the repository.
The repository is an object base. It will be represented as a DB-MAIN ERA schema. Entity types repre-
sent classes. All the rel-types are many-to-one. All the attributes are single-valued.
The repository is too large to be presented on a single page. For this reason, the repository definition
has been "exploded" in six views according to the various ontologies the repository can model. The first
view (see Fig. 11.1) is a "macro-view". This corresponds mainly to the objects the software engi-
neer can observe in the project window. The "data-schema" view (see Fig. 11.2) corresponds to
the former definition, that is, the representation of the entity-relationship schemas. The third
view (see Fig. 11.3) shows how notes are attached to all the objects of the repository. The
fourth view (see Fig. 11.4) represents the process schema (statements, functions, expressions,
…). The fifth view (see Fig. 11.5) denotes the persistent data that underlie the graphical repre-
sentation of the schema (data and process). Finally, the last view (see Fig. 11.6) is just an over-
view of all the objects which inherit from the generic_object. Of course, all those views are
intimately linked together and some objects appear in several views.

64 Chapter 11 Repository Definition
0-N 1-1sys_mo

0-N

1-1

system_sch

0-N1-1

pto

0-N1-1
pfrom

0-N

1-1

mo_mp

0-N

1-1

lineof

0-N 1-1is_in

0-N

1-1

contains

D

P

text_line
number
description[0-1]

system
name
short_name[0-1]
creation_date[0-1]
sem[0-1]
tech[0-1]

set_product_item

set_of_product

schema_type

schema
short_name[0-1]
type

product_type

product
name
version
creation_date[0-1]
last_update[0-1]
posx_project
posy_project
sem[0-1]
tech[0-1]

meta_property
name
type
updatable[0-1]
predefined[0-1]
multi[0-1]
hidden[0-1]
sem[0-1]

meta_object
name
type
sem[0-1]

document_type

document
path
type_of_file[0-1]
num_line

connection
type[0-1]

Figure 11.1 - The "macro" view.

 65
0-N

1-1
sch_data

0-N

1-1
sch_coll

0-N

1-1

rt_ro

0-N

1-1

ro_etr

0-N

1-1

real_comp

0-N

1-1

owner_pu

0-N
1-1owner_att

0-N 1-1gr_mem

0-N

1-1

gr_comp

0-N

1-1

entity_sub

0-N

1-1

entity_etr

0-N

1-1

entity_clu

0-N

0-1

domain

0-N

1-1

data_gr

0-N 1-1data_colet

0-N

1-1

const_mem

0-N1-1 coll_colet

0-N

1-1

clu_sub

P

P

P

P

P

P

sub_type
value[0-1]

si_attribute
type
length
decim[0-1]
stable[0-1]
recycable[0-1]

schema
short_name[0-1]
type

role
name
min_con
max_con
aggregation
sem[0-1]
tech[0-1]

rel_type real_component

proc_unit
mode[0-1]
type[0-1]

owner_of_proc_unit

owner_of_att

member_cst
mem_role[0-1]

group
name
type[0-1]
primary[0-1]
secondary[0-1]
coexistence[0-1]
exclusive[0-1]
at_least_one[0-1]
funct[0-1]
min_rep[0-1]
max_rep[0-1]
key[0-1]
user_const[0-1]
sem[0-1]
tech[0-1]

et_role

ent_rel_type

entity_type

data_object
name
short_name[0-1]
sem[0-1]
tech[0-1]

co_attribute

constraint
type

component

coll_et

collection
name
short_name[0-1]
sem[0-1]
tech[0-1]

cluster
name[0-1]
total
disjoint
criterion[0-1]

attribute
min_rep
max_rep
container[0-1]

Figure 11.2 - The "data" view.

0-N1-1 uv_nnn

1-1

0-N

note_nnn

1-10-N go_nnn

user_viewable

note
content

nn_notegeneric_object
flag[0-1]

Figure 11.3 - The "notes" view

66 Chapter 11 Repository Definition
0-N

1-1

st_env

1-1 0-Nro_spec

1-1 0-N
ro_gen

0-N1-1
re_spec

0-N1-1
re_gen

1-1
0-N

resrole_crole

1-1
0-N

resource_cres

0-1

0-N
p_sub_expression

0-N1-1
p_part_of

0-N

0-1

p_parameter

0-N1-1
p_made_of

0-N

0-1
p_fct_call

0-N

1-1

p_decl

0-N0-1 p_act_arg

0-N

0-1

pu_made_of

1-1

0-N

procunit_cpu
0-N

1-1

owner_pu

0-N

0-1

invokes_pu

1-1

0-N

go_st

1-1

0-N

cp_rol

1-1

0-N

cp_res

1-1 0-1
cons_crole

1-1

0-1

cons_cres
1-1

1-1

cons_cpu

state

ro_isa

re_isa
name[0-1]
sem[0-1]
tech[0-1]

res_role

resource
type

rel_element
name[0-1]
type[0-1]
mode
sem[0-1]
tech[0-1]

p_expression
operator
constant[0-1]
description[0-1]

proc_unit
mode[0-1]
type[0-1]

owner_of_proc_unit

generic_object
flag[0-1]

environment
name[0-1]
type
mode[0-1]
sem[0-1]
tech[0-1]

element
type
description[0-1]

cons_role
name[0-1]
min_card[0-1]
max_card[0-1]
sem[0-1]
tech[0-1]

cons_res
name[0-1]
min_card[0-1]
max_card[0-1]
sem[0-1]
tech[0-1]

cons_pu
name[0-1]
min_card[0-1]
max_card[0-1]
sem[0-1]
tech[0-1]

consumption
name[0-1]
short_name[0-1]
sem[0-1]
tech[0-1]

can_play

Figure 11.4 - The "process" view.

0-N

1-1

uv_uo

0-N 1-1object_view

0-N 1-1go_uo

P

user_viewable

user_view
name
type
font_name
font_size
mark_plan
reduce
text_font_name
text_font_size
xgrid
ygrid
zoom

user_object
posx[0-1]
posy[0-1]
color[0-1]

system
name
short_name[0-1]
creation_date[0-1]
sem[0-1]
tech[0-1]

schema
short_name[0-1]
type

generic_object
flag[0-1]

document
path
type_of_file[0-1]
num_line

Figure 11.5 - The "graph" view.

11.1 Project 67
DP

P

P

P

P

user_view user_objecttext_line

systemsub_type

state

si_attribute

set_product_item

set_of_product schema_typeschema

ro_isarolere_isa

res_roleresource

rel_type

rel_element

p_expressionproduct_typeproduct

proc_unit

note nn_note

meta_propertymeta_object

member_cst

group

generic_object

et_role

environment

ent_rel_type

entity_type

element

document_typedocument

data_object

co_attribute

cons_role

cons_rescons_pu

consumption

constraintconnection component

coll_et

collection

cluster

can_play

attribute

Figure 11.6 - The "inheritance" view.

The schema of the DB-MAIN repository presented above deserves some comments, some explanations
about how DB-MAIN projects, schemas, and all the constructs in the schemas are stored in the reposi-
tory. Each object type will be individually fully described and defined in chapter 12.
The repository is aimed at storing whole projects made of several products, possibly of different kinds,
such as database schemas, processing schemas, textual documents, and product sets. For instance, to
store an Entity/Relationship (ER) schema, concepts like entity types, attributes, relationships,... must be
represented. The folowing pages show how each product and each concept that can be represented in
these products are stored in the DB-MAIN repository.
To each concept corresponds an object type in the repository, such as the entity_type object type that
corresponds to the entity type concept and the co_attribute object type to the compound attribute con-
cept. However, some object types do not correspond to pertinent concepts. It is the case of the compo-
nent object type, for example. The presence of these object types is due to technical reasons1. Finally,
some object types are virtual, which means that they are a partition super-class of several other object
classes. Instances of a virtual object type cannot exist in themselves, but instances of the object types
which inherit of the virtual types can be seen and used as objects of the virtual object type. For instance,
a object of type attribute cannot be created, but objects of types si_attribute or co_attribute can all be
used as if they were of the type attribute.

11.1 Project
The very first object that must be created in the repository, when a project starts, is of the system type.
There can be only one instance/object of this type in a project. All the products that appear in the pro-
ject window of DB-MAIN are schemas, textual documents and sets of products, which are respectively
represented by the object types schema, document and set_of_product. These three object types share
common properties which are gathered in the product virtual object type. product instances are linked
to the object of type system by the system_sch link.
Important note: Voyager 2 does not allow DB-MAIN users to manage the structured histories of DB-
MAIN. Only the compact view of the project is accessible and manageable through Voyager. Only one
exception to this rule, for supporting process modelling with MDL: when a new product is created with
Voyager 2, a product type can be specified.

1. Our repository technology can not represent many-to-many relationship types.

68 Chapter 11 Repository Definition
11.2 ERA schema
11.2.1 Schema
An ERA schema is an instance of schema object type whose attribute type is set to the constant
ERA_SCHEMA. A schema is made of data objects which can be gathered into collections. A data object
is either an entity type, a rel-type, an attribute or a processing unit. data_object is a virtual object type
which allows us to link all the data objects composing the schema to the schema through the sch_data
link. All the collections of data objects of a schema are linked to the schema by the sch_coll link. The
schema object type, inheriting the owner_of_proc_unit object type, can receive processing units linked
by owner_pu.

11.2.2 Entity type
An entity type is stored as an object of the type entity_type. Using the inheritance mechanism, an
entity_type being an ent_rel_type which is itself a owner_of_att, an entity type can receive several attri-
butes, all of the first level, linked to it by the owner_att link. In the same way, an ent_rel_type being an
owner_of_proc_unit, an entity type can receive some processing units using the owner_pu link. Finally,
an ent_rel_type being also a data_object, an entity type can receive groups by the data_gr link.

11.2.3 Rel-type
A rel-type is stored as an object of the type rel_type. A rel_type being an ent_rel_type, a rel-type can
possess attributes, processing units and groups in the same way as entity types.

11.2.4 Attribute
The representation of an attribute depends on its type:
• Compound attributes are represented by the co_attribute object_type. co_attribute inherits from

owner_of_att, so each compound attribute can receive sub-attributes by the owner_att link. By this
mechanism, any compound attribute of level n receives attributes of level n+1.

• Object attributes are represented by objects of the type si_attribute whose property type is set to the
constant OBJECT_ATT and which are connected to a data_object by a domain link. This
data_object used as the type of the object attribute must be an entity type.

• User-defined attributes are represented by objects of the type si_attribute whose property type is set
to the constant USER_ATT and which are connected to a data_object by a domain link. This
data_object used as the user-defined type must be an attribute. This attribute must belong to the spe-
cial entity type]DOMAINS-ATTRIBUTES[which belongs to the special schema named
]DOMAINS[(with version]USER-DEFINED[).

• All other attributes are represented by objects of the type si_attribute that are not linked by the
domain link. The property type identifies the type of the attribute.

11.2.5 Processing unit
In an ERA schema, a processing unit can be attached either to a schema, to an entity type or to a rel-
type. It is only shown by its name. In the repository it is represented by an object of the type proc_unit.
For representing a more precise definition of a processing unit, the DB-MAIN user will use a UML
activity or use case diagram.

11.2.6 Role
A role is represented in the repository by an instance of the role object type. Each role is always linked
to one rel-type by a ro_etr link. But, the role can be played by several entity-types. And an entity type
can play a role in several rel-types. et_role is a technical object type that represents a many-to-many rel-
type between a role and an entity type. Each et_role is identified by its link entity_etr to entity_type and
by its link role_etr to role.

11.2.7 Generalization/specialization
Entity types can be generalized or specialized. The repository allows an entity-type to be specialised in
several ways. For instance, customers can be divided in male/female and have different characteristics

11.2 ERA schema 69
according to the gender, or they can be divided into children and adults with different characteristices
too. To do so, an entity_type object can be linked to several objects of type cluster, one for the gender
and one for the age in the example, and each cluster can have several sub-types. In the example, one
cluster should have two sub-types which are entity types males and females, and the other cluster
should have two sub-types too, which are young-people and adult-people.
On the other end, an entity type can be generalised several times. For instance, adult-people can be a
specialization of both customers and V.I.P. The many-to-many rel-type between entity_type and cluster
is materialized by the sub_type object type, each sub_type being identified by its link entity_sub to
entity_type and its link clu_sub to cluster.
In practice, DB-MAIN does not support multiple clusters, so each entity_type should not be linked to
more than one cluster.

11.2.8 Group and constraint
A group can be made up of several components which can be attributes, roles or other groups.
real_component is a virtual object type which is a generalization of these attributes, roles and groups.
On the other hand, each of these real_components can be part of several groups. This many-to-many
rel-type between group and real_component is materialized by the component technical object type,
which is identified by its gr_comp link to group and its real_comp link to real_component.
Note that, in an entity type, the roles that can be part of a group are the "far" roles of the rel-types into
which the entity type participates. For instance, if A and B are two entity types, R is a rel-type, A plays
a role rA in R and B plays a role rB in R, then the groups of A can only include the role rB, not rA.

rB
0-N

rA
1-1

R
B

B1
...

A
A1
...
gr: A1

R.rB

A group can be the support of one or several constraints. A constraint is represented by an object of the
type constraint. The various constraints can be classified in three categories:
• A constraint on the members of a group, which should be validated on each instance of the object

type owning the group. For instance, the members of the group should coexist or are mutually exclu-
sive,... These constraints are represented by the value given to the type property of the constraint.

• A constraint on the group as a whole, which should be validated on the set of all the instances of the
object type owning the group. For instance, the group is an identifier of an entity type. These cons-
traints are represented in the same way as the previous ones.

• A constraints between several groups. For instance, a referential contraint between a reference group
and an identifying group. In this case, the constraint must be linked to all the groups and the link
must show the role of the group in the constraint. member_cst is the object type which act as the
many-to-many relationship between constraint and group. It is identified by both links const_mem
to constant and gr_mem to group. Member_cst is characterised by the role of the group in the cons-
traint stored in the mem_role property. DB-MAIN presently supports constraints between two
groups only. The group origin of the constraint should be linked to a member_cst object with the
property mem_role set to the constant OR_MEM_CST, and the target group should be linked to a
member_cst object with the property mem_role set to the constant TAR_MEM_CST, these two
member_cst objects being linked to the same constraint object.

11.2.9 Collection
A collection can contain several data objects. In fact, in a ER schema, DB-MAIN only supports entity
types. And each entity type can be part of several collections. This many-to-many rel-type between col-
lection and data_object is marterialized by the object type col_et. It is identified by its link coll_colet to
collection and its link data_colet to data_object.

70 Chapter 11 Repository Definition
11.3 UML class diagram
A UML class diagram is an instance of schema object type whose attribute type is set to the constant
UMLCLASS_SCHEMA.
Basically, in the repository, A UML class diagram is the same as an ER schema. Only the graphical
view of these schema is different. In particular, the roles of a rel-types are stored in the repository in the
same way for UML class diagrams as for ER schemas, even if they are inverted on screen.
Note that non-binary rel-types are difficult to manage in a UML class diagram, so they should be avoi-
ded, even if they are permitted.

11.4 UML activity diagram
11.4.1 Schema
A UML activity diagram is an instance of schema object type whose attribute type is set to the constant
UMLACTIVITY_DIAGRAM. A schema is made up of processing units, with various roles and various
graphical representaions, object states and relations between all these components. An object state
represents a particular state of a data object at a given time. A data object is either an internal attribute,
or an external attribute, entity type, rel-type or collection. Internal means that the attribute is part of the
schema, and external means that the data object is in fact a reference to a data object defined in a data
schema (ER or UML class diagram). data_object is a virtual object type which allows us to link all pro-
cessing units and internal data objects to the schema through the sch_data link.

11.4.2 Action state
An action state is stored in the repository as a proc_unit. Its mode property should be left to ’ ’. Its type
field can be used for documentation, it can indicate if the action state should be seen as a method, a pro-
cedure, a function, a trigger,... The name, short_name, semantics_desc, and technical_desc fields are
inherited from data_object. proc_unit also inherits the roles it plays in the owner_group and domain
links, but it never uses them. Using them can lead to unexpected behaviour of DB-MAIN, possibly to
crash.

11.4.3 Initial state, final state, synchronisation, decision, signal sending and
receipt
Initial states, final states, horizontal and vertical synchronisation bars, decision states, signal sendings
and signal receipts are special kinds of action states (see 11.4.2). Their mode field and their name
should be set to the following special values:

Table 11.1 - Special action states

mode name
initial state I INITIAL_STATE
final state F FINAL_STATE

horizontal synchronisation H SYNCHRONISATION
vertical synchronisation V SYNCHRONISATION

decision D DECISION
signal sending S SIGNAL_SENDING
signal receipt R SIGNAL_RECEIPT

11.4.4 Object state
An object state is an instance of the state type which is linked through go_st to a generic_object. It is
identified by its name, inherited from data_object, among all the states of the schema it is part of. The
short_name, semantics_desc, and technical_desc fields are inherited from data_object too. proc_unit
also inherits the roles it plays in the owner_group and domain links, but it never uses them. Using them
can lead to unexpected behaviour of DB-MAIN, possibly to crash.

11.5 UML use case diagram 71
11.4.5 Control flow
A control flow between two action states (proc_unit), according to its most general meaning (including
initial and final state, synchronisation,...), is represented by an instance of rel_element, and two instan-
ces of element. An element with its type field set to ’C’ is linked with pu_made_of to the proc_unit from
which the control flow is originating. Another element with its type set to ’A’ is linked with invokes_pu
to the proc_unit to which the control flow is targeted. These two elements are linked by a rel_element
whose type and mode fields can be left undefined. A rel_element has a name, a semantics_desc and a
technical_desc. Note that each proc_unit is linked to at most one element with the type set to ’C’ which
is shared by all the control flows originating from this proc_unit.

11.4.6 Object flow
An object flow is represented by an instance of environment which is linked to an action state
(proc_unit) with the p_decl link and to an object state (state) with the st_env link. An environment has a
name, a semantics_desc and a technical_desc. The orientation of the link is stored in the mode field: ’I’
for input, ’O’ for output and ’U’ for update. The type field reminds whether the object whose, state is
linked by st_env, is internal (’I’) or external (’E’).

11.5 UML use case diagram
11.5.1 Schema
A UML use case diagram is an instance of schema object type whose attribute type is set to the constant
UMLUSECASE_DIAGRAM. A schema is made up of use cases, actors and relations between these
components.

11.5.2 Use case
A use case is stored in the repository as an instance of proc_unit. Its type and mode fields are not used.
It inherits its name, short_name, semantics_desc, and technical_desc from data_object. proc_unit also
inherits the roles it plays in the owner_group and domain links, but it never uses them. Using them can
lead to unexpected behaviour of DB-MAIN, possibly to crash.

11.5.3 Actor
An actor is a special kind of resource and is stored as an instance of resource in the repository. Since
resource inherits from data_object, an actor has got a name, a short_name, a semantics_desc and a
technical_desc. It also inherits the roles played by data_object in the owner_group and domain links,
but it never uses them. Using them can lead to unexpected behaviour of DB-MAIN, possibly to crash.

11.5.4 Extend, Include and use case generalization relations
An extend, include or generalization relation between two use cases (proc_unit) is represented by an
instance of rel_element, and two instances of element. An element is linked with pu_made_of to the
proc_unit from which the relation is originating. Another element linked with invokdes_pu to the
proc_unit to which the relation is targeted. These two elements are linked by a rel_element whose type
and mode fields can be left undefined. A rel_element has a name, a semantics_desc and a
technical_desc. The type field of the two elements should have the following values, according to the
kind of relation:

Table 11.2 - Type of elements for relations between use cases

element linked to the
originating use case

element linked to the
target use case

extend E X
include I N

use case generalization G R

Note that each originating proc_unit is linked to at most one element with the same type value which is
shared by all the relations of the same kind originating from this proc_unit.

72 Chapter 11 Repository Definition
11.5.5 Actor generalization
An actor generalization is represented in the repository by an instance of re_isa linked to the most gene-
ral resource with re_gen, and to the specialized resource with re_spec. A re_isa has a name, a
semantics_desc and a technical_desc.

11.5.6 Association
An association between a use case (proc_unit) and an actor (resource) is stored as a consumption,
cons_pu and cons_res in the repository. Since consumption inherits from data_object, a consumption
has got a name, a short_name, a semantics_desc and a technical_desc. The consumption is linked to the
cons_pu with an instance of the cons_cpu link and to the cons_res with an instance of the cons_cres
link. The cons_pu is linked to the proc_unit with an instance of the procunit_cpu link. A cons_pu has a
name, a semantics_desc and a technical_desc. The min_card and max_card fields show how many
actors of the same type should be associated with the use case. The cons_res is linked to the resource
with an instance of the resource_cpu link. A cons_res has a name, a semantics_desc and a
technical_desc. The min_card and max_card fields of cons_pu show in how many instances of the use
case each actor should participate. At the present time no instance of res_role can be linked to the con-
sumption.

11.6 Textual document
A textual document is represented by an object of type document. Such an object mainly contains a
reference to a text file on a disk. Such a document is made up of lines of text. A DB-MAIN user may
need to mark or to annotate some of the lines. To do so, an object of type text_line can be created for
each line that deserve such an attention.

11.7 Set of products and connection
A set of product can contain any number of items, technical objects of type set_product_item linked to
the set_of_product by contains, which can be any other product, linked to set_product_item by is_in.
An integrity constraint is that a set cannot contain itself. A product can be an item of several sets.
Products can also be connected with an oriented connection. An object of the connection type is linked
to the origin product by pfrom and to the target product by pto.

11.8 Note
To each element of a schema, diagram or of the project, can be attached a note. In the repository, notes,
represented by objects of type note, are attached to the generic_object object type, altough, in practice,
DB-MAIN only supports notes on the following object types: schema, entity_type, rel-type,
si_attribute, co_attribute, role, group, collection, cluster, proc_unit, rel_element, environment, state,
resource, consumption, cons_pu, cons_res, document, set_of_product.
A note attached to one element. This element can appear in one or many views (like an entity type that
can appear in a UML class diagram and in a UML activity diagram). Sometimes the note should be
visible in all the views, sometimes not. Moreover, an object may receive several notes, possibly in a sin-
gle view or in many views. This complex situation is managed by technical objects of the type nn_note
which materializes a ternary rel-type between the note, the generic_object to which the note is attached,
and the user_viewable generalizing the schema or the system in which view the note should appear. A
nn_note object is identified by its three links note_nnn to the note, go_nnn to the generic_object, and
uv_nnn to the user_viewable.

11.9 Meta object and meta property
In every project, DB-MAIN creates some meta_objet objects which are linked to the system object with
the sys_mo link. A Voyager 2 program can add its own meta_object for its own needs, but these new
meta_objects will not be managed by DB-MAIN.

11.9 Meta object and meta property 73
To each meta_object created by DB-MAIN, some meta_properties are created automatically too, and
linked by mo_mp. The user can manage all of them and create new ones, either to DB-MAIN
meta_objects or to the user-defined meta_objects. The new meta-properties will be managed by DB-
MAIN.

74 Chapter 11 Repository Definition

Chapter 12

Objects Definition

This chpater presents all the object types of the repository presented in Chapter 11.
Each object type is presented in a formal way with its generalizations, its attributes and its links to other
objects. It is then described in English with some comments. The instruction to perform in order to
create a new object of the type completes the description. These presentations use the following con-
ventions.
The formal presentation of each object type is presented as a table, like in the following exemple:
:

employee
isa person
name string[L_NAME] 1-1
own 0-∞ cars

Figure 12.1 represents graphically the employee table.

1-10-N own

person

employee
name

cars

Figure 12.1 - Graphical representation of the employee table.

The first line contains the object name. The second line is the list of generalizations: employee can be
generalized by person.Then come all the properties of the object: fields and roles.
Each field is described by its name, its type and its minimum-maximum cardinality. When an attribute
is optional, a default value is given to it anyway. This default value is mentioned between parentheses.
When the type is a string, the maximum length of the string is indicated between square brackets1, using
predefined integer constants. It is recommended to use the name of the constants rather than their value
for obvious reasons of maintenance of the Voyager 2 programs with future versions of DB-MAIN.

1. Although strings size is unlimited in Voyager 2, the need to store this information in a persistent way on disk requires to
limit the size of each string to a reasonable length.

76 Chapter 12 Objects Definition
Each role is described by its name2, the minimum-maximum cardinality and finally the object type at
the other end of the link.
Each time a new object is created, its environment must be defined. The environment of an object is the
collection of data required to create it: field values, roles, positions,... Objects are created by calling the
function create with the components of the environment in argument. Such a call looks like:

et := create(ENTITY_TYPE,
name: "employee",
short_name: "emp",
sem: "male/female",
@SCH_DATA: GetCurrentSchema());

where the first argument is a predefined integer constant denoting the type of the object to create. The
following arguments are items composed of two expressions: a constant denoting the component of the
environment being specified, and its value. All the mandatory components (minimum cardinality>0)
must be specified. Their order of the components is not important. If a component is specified twice or
more, create chooses one of them randomly. When the left expression of an item is underlined, it is
required. Otherwise, it is optional but subject to the restrictions explained in the comments.
If a mandatory component (field, role, ...) is lacking, or if an integrity constraint is violated then the pro-
gram is aborted, and a possible explanation is printed on the console. Note that the message can someti-
mes be confusing. It is the case for instance, when unicity/integrity constraints are violated3: the
program is aborted and a message about the memory is displayed4. But, in any case, the compiler shows
which instruction is causing the error.
Note that the binary relationships in the repository are called links, in this book, in order to make easier
the distinction between relationships used by the repository (link) and relationships defined by the repo-
sitory (see 12.16). The links always define a relationship between two object types: the father and the
son. The father may have zero, one or more sons and sons may have zero or one father, but no more. To
each link corresponds one integer constant from the table 2.5.

12.1 generic_object
generic_object

flag integer 0-1 (=0)
p_act_arg 0-∞ p_expression
go_st 0-∞ state
go_uo 0-∞ user_object
go_nnn 0-∞ nn_note

This object type has no other purpose than being a supertype of all the other object types. This property
if often used when programmers have to deal with objects for which they do not know the exact type.
For instance: "What is the current selected object in the schema window?" (GetCurrentObject()) will
return one object whose type is unknown. The programmer can store this value in a variable of type
generic_object.
The flag field is an array of bits that stores various information. "mark" is such an information. The pro-
grammer can use the functions GetFlag and SetFlag5 to access this array.
Let us note that the flag array can store information users are not aware of. Therefore, when accessing
some bits, programs should be careful to preserve all the the others. The five following indexes are defi-
ned:on a generic_object: MARK1, MARK2, MARK3, MARK4, MARK5. The flag of index MARKi of

2. Let us note that roles name are sometimes preceded by the symbol @ to indicate which direction of the link is used.
3. For instance: you are defining for the second time an entity-type with the same name.
4. This is due to improve the efficiency of the system.
5. cfr. page 45

12.2 user_object 77
an object is true if, and only if, the object is marked in the marking plan number i (see figure 12.2). The
following example shows how to use this flag:

schema: sch;
data_object: dta;
integer: the_flag;

begin
 sch := GetCurrentSchema();
 for dta in DATA_OBJECT[dta]{@SCH_DATA:[sch] with GetType(dta)=ENTITY_TYPE} do {
 the_flag := dta.flag;
 if GetFlag(the_flag,MARK2) then {
 dta.flag := SetFlag(the_flag,MARK2,FALSE);
 } else {
 dta.flag := SetFlag(the_flag,MARK2,TRUE);
 }
 }
end

This program marks unmarked entity types and unmarks marked entity types (wrt. the 2th marking
plan). .

Figure 12.2 - Window sample showing the "mark" interface.

The flag index SELECT is used to select/unselect an object in the current view.

12.2 user_object
user_object

isa generic_object
posx integer 0-1 (unknown)
posy integer 0-1 (unknown)
color integer 0-1 (unknown)
@go_uo 1-1 generic_object (unknown)
@uv_uo 1-1 user_view

This object type stores a few information about the graphical representation of an object in a user view.
The first time DB-MAIN draws a new object in a window, if this object has no associated user_object,
DB-MAIN creates it and sets default values for the attributes. Voyager 2 programs are not allowed to
create user_objects.

12.3 note
note

isa generic_object
content string 1-1
note_nnn 0-∞ nn_note

This object type denotes a note (free text) attached to one or more generic_objects through a nn_note.

78 Chapter 12 Objects Definition
To create a new note:
what := create(NOTE,

content: string,
GENERIC_OBJECT: generic_object,
USER_VIEWABLE: user_viewable);

The content, the generic_object and the user_viewable must be all specified, or none of them. In the lat-
ter case, a nn_note must be created before the content can be updated. Indeed, the content is saved in
the same file as all the descriptions of the schema or of a project, so a path between the new note and a
schema, or the system, must exist for the content of the note to be saved.
Rem: the owner is either a schema, an entity type, a rel-type, an attribute, a role, a group, a cluster, a
processing unit, or a collection.

12.4 nn_note
nn_note

isa generic_object
@go_nnn 1-1 generic_object
@note_nnn 1-1 note
@uv_nnn 1-1 user_viewable

A nn-note is a relationship entity type between user-viewables, generic_objects and notes. It is automa-
tically deleted when either the note or the generic_object or the user_viewable is deleted.
To create a new nn_note:

what := create(NN_NOTE,
@GO_NNN: generic_object,
@NOTE_NNN: note,
@UV_NNN: user_viewable);

12.5 system
system

isa user_viewable
name string[L_NAME] 1-1
short_name string[L_SNAME] 0-1 (="")
creation_date string[L_DATE] 0-1 (see ♦)
sem string 0-1 (="")
tech string 0-1 (="")
sys_sch 0-∞ product

An object of type system represents the project under development, made up of schemas, processes,
files (document),... The repository can contain only one object of type system since DB-MAIN cannot
manage several projects at the same time.
To create a new system:

what := create(SYSTEM,
name: string,
short_name: string,
creation_date: string,
flag: integer);

♦ When the creation_date field is not mentioned, this field if automatically updated with the date of the
computer.

12.6 product 79
12.6 product
product

name string[L_NAME] 1-1
version string[L_VERSION] 1-1
creation_date string[L_DATE] 0-1 (see ♦)
last_update string[L_DATE] 0-1 (see ♦)
sem string 0-1 (="")
tech string 0-1 (="")
posx_project integer 0-1 (=0)
posy_project integer 0-1 (=0)
@system_sch 1-1 system
pfrom 0-∞ connection
pto 0-∞ connection

Objects of type product do not exist per se. They only have a sense as a generalization of schemas (see-
section 12.7), documents (see section 12.10) and set of products (see section 12.8). Therefore it is
impossible to create directly such an object. Each product is identified by its mandatory components.
♦ It is recommended not to use the creation_date and last_update fields since they are updated automa-
tically. In case these fields are used, they must follow the following format : "YYYYMMDD", exactly
four digits to represent the year, exactly two digits for the month and exactly two digits for the day.

12.7 schema
schema

isa product
isa user_viewable
isa owner_of_proc_unit
short_name string[L_SNAME] 0-1 (="")

type char 0-1
(=ERA_SCHEMA)

sch_coll 0-∞ collection
sch_data 0-∞ data_object

Objects of type schema are generalized entity-relationship schemas. Each schema belongs to only one
system6 and is identified by its name, its version and the system.
The type field denotes the kind of schema. The possible values of this field are:

− ERA_SCHEMA: It denotes an Entity-Relationship-Attribute schema.
− UMLCLASS_DIAGRAM: It denotes an UML class diagram schema.
− UMLACTIVITY_DIAGRAM: It denotes a UML activity diagram schema.
− UMLUSECASE_DIAGRAM: It denotes a UML use case diagram schema.

The following indexes in the flag field denote the following properties:
− RTSQUARE: the shape of the rel-types has square corners.
− RTROUND: the shape of the rel-types has round corners.
− RTSHADOW: the rel-types are displayed with a shadow.
− ETSQUARE: the shape of the entity types has square corners.

6. There is only one system instance in the repository of DB-MAIN.

80 Chapter 12 Objects Definition
− ETROUND: the shape of the entity types has round corners.
− ETSHADOW: the entity types are displayed with a shadow.

To create a new schema:
what := create(SCHEMA,

name: string,
short_name: string,
version: string,
creation_date: string,
last_update: string,
type: char
flag: integer,
sem: string,
tech: string,
SCHEMA_TYPE: schema_type,
@SYSTEM_SCH: system);

Note: the SCHEMA_TYPE field is to be used only in conjunction with the MDL language for defining
methods [7].

12.8 set_of_product
set_of_product

isa product
isa owner_of_proc_unit
contains 0-∞ set_product_item

Objects of type set_of_product denote sets of products. Every object belongs to only one system7 and is
identified by its name, its version and the system.
The following indexes in the flag field denote the following properties:

− HIDEPROD: indicates whether DB-MAIN has to display the elements of the set (false) or to hide
them (true).

To create a new set_of_product:
what := create(SET_OF_PRODUCT,

name: string,
version: string,
creation_date: string,
last_update: string,
flag: integer,
sem: string,
tech: string,
@SYSTEM_SCH: system);

12.9 set_product_item
set_product_item

isa generic_object
@contains 1-1 set_of_product
@is_in 1-1 product

7. There is only one system instance in the repository of DB-MAIN.

12.10 document 81
Each set_product_item object denotes a tuple (p, s) where p is a product and s is a set of products mea-
ning that the product p belongs to the set of products s.
To create a new set_product_item:

what := create(SET_PRODUCT_ITEM,
flag: integer,
@CONTAINS: set_of_product,
@IS_IN: product);

12.10 document
document

isa product
isa user_viewable
path string 1-1
type_of_file string 0-1 (="")
lineto

Objects of type document denote any textual document like files, documentation,… The type_of_file
field is a string describing the type of the file (eg. "text", "COBOL", "annual report 95",...). The
creation_date and last_update fields are optional fields (see section 12.6 for more details about the
default values). Documents are attached to one and only one system.
To create a new document:

what := create(DOCUMENT,
name: string,
version: string,
path: string,
creation_date: string,
last_update: string,
flag: integer,
type_of_file: string,
DOCUMENT_TYPE: document_type,
@SYSTEM_SCH: system);

Note: DOCUMENT_TYPE is only used in conjunction with the MDL language [7].

12.11 text_line
text_line

isa generic_object
number integer 1-1
description string 0-1 (="")
@lineto 1-1 document

A text_line stores some information concerning a particular line of a document. The line is identified by
its number in the document. The information can be stored either in the description, in the flag inherited
from the generic object, or in the associated user_object (special colour for example) created automati-
cally the first time that DB-MAIN shows the line on screen.
To create a new line:

what := create(TEXT_LINE,
number: integer,
description: string,
@LINETO: document);

82 Chapter 12 Objects Definition
12.12 connection
connection

isa generic_object
type string[L_ROLE] 0-1 (="")
@pfrom 1-1 product
@pto 1-1 product

Objects of type connection represent oriented links between objects of the project like schemas and
documents (file, ...). If the field type is not mentioned, its default value is "". This field can have any
value but a few constants with precise semantics are defined:

− CON_COPY: The target product is a copy of the origin product.
− CON_DIC: The target product is a "printed" copy (File/Print dictionary).
− CON_GEN: The target product is some code generated on the basis of the origin product.
− CON_INTEG: Undocumented feature (so far).
− CON_XTR: The target product is the result of the extraction process.

To create a new object of type connection:
what := create(CONNECTION,

type: string,
flag: integer,
@PFROM: product,
@PTO: product);

12.13 data_object
data_object

isa generic_object
isa owner_of_proc_unit
name string[L_NAME] 1-1
short_name string[L_SNAME] 0-1 (="")
sem string 0-1 (="")
tech string 0-1 (="")
@sch_data 1-1 schema
data_gr 0-∞ group
domain 0-∞ si_attribute

Objects of type data_object are generalization of objects representing entity types, relationship types,
attributes, processing uniots or resources. Objects of this type cannot be created directly.

12.14 ent_rel_type
ent_rel_type

isa data_object
isa owner_of_att

Objects of type ent_rel_type are generalizations of entity types (section 12.15) and relationship types
(section 12.16). Such objects cannot be created directly.

12.15 entity_type 83
12.15 entity_type
entity_type

isa ent_rel_type
entity_etr 0-∞ et_role
entity_sub 0-∞ sub_type
entity_clu 0-∞ cluster

Each object of type entity_type denotes an entity type. It can belong to collections, have attributes, play
roles in relationship types, and be generalization/specialization of other entity types.
To create a new object of type entity_type:

what := create(ENTITY_TYPE,
name: string,
short_name: string,
sem: string,
tech: string,
flag: integer,
@SCH_DATA: schema);

12.16 rel_type
rel_type

isa ent_rel_type
rt_ro 0-∞ role

Objects of type rel_type denote relationship types. Each relation is attached to exactly one schema and
its name identifies it among all other relationship types of the same schema. Rel-types can own attribu-
tes, groups and roles.
To create a new relation:

what := create(REL_TYPE,
name: string,
short_name: string,
sem: string,
tech: string,
flag: integer,
@SCH_DATA: schema);

12.17 attribute
attribute

isa data_object
isa real_component
min_rep integer 1-1
max_rep integer 1-1
container char 0-1 (=SET_CONTAINER)
@owner_att 1-1 owner_of_att

The attribute object type is a super-type of types si_attribute and co_attribute. Therefore, such objects
cannot be created directly. See sections 12.18 and 12.19 for more details.
All the fields of an attribute are shared with sub-types by the inheritance principle. The min_rep (resp.
max_rep) is the minimum (resp. maximum) cardinality of the attribute. This value must be comprised

84 Chapter 12 Objects Definition
between 0 and N_CARD which is equivalent to the infinite value8. The minimum cardinality must be
smaller than the maximum cardinality. If one of the rules cited above is transgressed, then the program
is aborted.
The container field shows how multivalued attributed must be interpreted. The possible values for this
field are:

− SET_CONTAINER: It is the default value. It denotes a set, in the mathematical sense.
− BAG_CONTAINER: It is a set with possible duplicates. There is no order inside a set/bag.
− ARRAY_CONTAINER: It is an array, each item can be referenced with an index. Arrays can con-

tain several identical items.
− UNIQUE_ARRAY_CONTAINER: It is an array into which each element appears only once.
− LIST_CONTAINER: A list is an ordered collection of items (duplicates are allowed).
− UNIQUE_LIST_CONTAINER: A list with no duplicates.

Note: the role @sch_data is redundant with the mandatory role @owner_att, since attributes and their
owners must belong to identical schemas, but it is necessary for DB-MAIN, for optimization reasons.
Voyager programs should manage this redundancy correctly.

12.18 si_attribute
si_attribute

isa attribute
type char 1-1
length integer 1-1
decim integer 0-1
stable integer 0-1 (=FALSE)
recyclable integer 0-1 (=TRUE)
@domain 0-1 data_object

Objects of type si_attribute represent simple, atomic, attributes. The type field is the type of the attri-
bute. Special constants are available in Voyager 2 to denote the different possible types:

− CHAR_ATT: string with a constant length.
− VARCHAR_ATT: string with a variable length, possibly with a maximum length.
− NUM_ATT: numerical value with fixed integer and decimal part lengths.
− DATE_ATT: date.
− BOOL_ATT: boolean value.
− FLOAT_ATT: real value with specified precision.
− USER_ATT: user-defined domain whose definition is available with the domain relationship.
− OBJECT_ATT: the entity-type9 linked with the domain relationship.
− INDEX_ATT: The value of the corresponding attribute, unique, is automatically computed by the

DBMS.
− SEQ_ATT: The value of the corresponding attribute is automatically computed, in sequence, by

the DBMS.
A user-defined domain attribute must be attached to a data_object stored in a special schema that can
ba accessed with the following query: GetFirst(SCHEMA[sch]{sch.name=SCHEMA_DOMAINS}).

8. Only the maximum cardinality may take the infinite value.
9. Although the data_object is the object type found on the other side of the domain relationship, only the entity-type instan-

ces are pertinent

12.19 co_attribute 85
New user-defined domains should be added to this schema too. They will automatically appear in the
suitable dialog boxes of DB-MAIN.
The length field denotes the size of the value and the decimal field denotes the precision of the decimal
type. The following table indicates when the length and decimal values are required. Cells marked with
a star show that a value is expected if the corresponding type is mentioned. If a value is shown in a cell,
that value is forced for the corresponding field.

 length decimal
 CHAR_ATT *
 VARCHAR_ATT *
 NUM_ATT * *
 DATE_ATT 10
 BOOL_ATT 1
 FLOAT_ATT *
 USER_ATT
 OBJECT_ATT

The stable field indicates that the value of the attribute cannot be changed. The recyclable field shows
that each value of the attribute can be reused by the same attribute of other owners at any time; the
value of a non-recyclable attribute can never be reused. These fields are mainly useful with identifiers.
To create a new si_attribute:

what := create(SI_ATTRIBUTE,
name: string,
min_rep: integer,
max_rep: integer,
type: char,
length: integer,
short_name: string,
stable: integer,
recyclable: integer,
container: char,
decim: integer,
sem: string,
tech: string,
where: attribute,
flag: integer,
@OWNER_ATT: owner_of_att,
@DOMAIN: data_object);

where shows where the new attribute must be placed among its siblings. If this information is not sup-
plied, the new attribute is put in first position in the list of attributes of the father, specified in
@OWNER_ATT. Otherwise, where must be another attribute of the same father, and the new attribute
will be created just after that specified one in the list of attributes of the father. For example, to create an
object attribute of type ent:

si_attr:=create(SI_ATTRIBUTE,type: OBJECT_ATT,min_rep: 1,max_rep: MAX_CON,
 container: BAG_ATT,@OWNER_ATT: the_owner,@DOMAIN: ent);

12.19 co_attribute
co_attribute

isa attribute
isa owner_of_att

86 Chapter 12 Objects Definition
Objects of type co_attribute represent compound attributes. Only the min_rep and max_rep fields must
be mentioned in the environment as well as the name and the owner (owner_of_att).
To create new composed attributes:

what := create(CO_ATTRIBUTE,
name: string,
short_name: string,
min_rep: integer,
max_rep: integer,
container: char,
sem: string,
tech: string,
where: attribute,
flag: integer,
@OWNER_ATT: owner_of_att);

See 12.18 for more details about the where field.

12.20 owner_of_att
owner_of_att

isa generic_object
owner_att 0-∞ attribute

The type owner_of_att has no creator. Objects of this type are just a generalization of objects of
ent_rel_type and co_attribute types to allow them to own attributes.

12.21 component
component

isa generic_object
@real_comp 1-1 real_component
@gr_comp 1-1 group

Technical objects of component type are artifacts to represent many-to-many relationships. Since the
order of the components of a group matters, the order of the objects inside that many-to-many rela-
tionship is important. In the creator, a special field, where, is used to denote the component preceding
the new one in the set of components owned by a group. If this information is not provided in the envi-
ronment, then the new component becomes the first one of the group.
To create a new object of type component:

what := create(COMPONENT,
flag: integer,
where: component,
@REAL_COMP: real_component,
@GR_COMP: group);

For instance, let us suppose that the attribute at must be inserted at the second place in the group gr, the
first item of the group being the component co. The instruction will be:

new_one:=create(COMPONENT,@REAL_COMP:at,@GR_COMP:gr,where:co);

12.22 group 87
12.22 group
group

isa generic_object
isa owner_of_proc_unit
name string[L_NAME] 1-1
type char 0-1 (=ASS_GROUP)
primary integer 0-1 (=0)
secondary integer 0-1 (=0)
coexistence integer 0-1 (=0)
exclusive integer 0-1 (=0)
atleastone integer 0-1 (=0)
key integer 0-1 (=0)
user_const integer 0-1 (=0)
funct integer 0-1 (=0)
min_rep integer 0-1 (=0)
max_rep integer 0-1 (=0)
sem string 0-1 (="")
tech string 0-1 (="")
@data_gr 1-1 data_object
gr_mem 0-∞ member_cst

A group in the repository of DB-MAIN is a list of properties like attributes, roles and other groups. Ele-
ments of groups are real_component that is generalization of attribute, role and group. A group can
belong to an entity type, a rel-type or an attribute, therefore there is a link between data_object and
group.
The fields of a group are:
• name: The group name is mandatory. It is usually a technical name. All the groups attached to the

same data_object must have distinct names.
• type: The type is either ASS_GROUP (normally) or COMP_GROUP (shouldn’t be used anymore).
• primary/secondary: The primary and secondary fields denote respectively primary and secondary

identifiers and must be used as boolean values.
• coexistence: This field is used as a boolean value to indicate if all the items of the group, optional,

must be instantiated together or not.
• exclusive: This field is used as a boolean value to indicate whether at most one item of the group can

be instantiated, or not.
• atleastone: This field is used as a boolean value to indicate whether at least one item in the group

must be instantiated, or not.
• key: The group is an access key for its owner.
• user_const: This field is used as a boolean value to indicate that the meta_property "User-constraint"

contains the user contraint type.
• funct: This field is an array of bits that stores the different functions of the group (primary, secon-

dary, coexistence, exclusive, atleastone, key, constraint). The corresponding constants are ID_GR,
SEC_GR, COEX_GR, EXCL_GR, AL1_GR, KEY_GR and CST_GR.

• min_rep and max_rep: cardinalities of the group. The values of these fields must be comprised
between 0 and N_CARD which is equivalent to the infinite value10.

The following instruction creates a new group:

10. Only the maximum cardinality may take the infinite value and min_rep <= max_rep.

88 Chapter 12 Objects Definition
what := create(GROUP,
name: string,
type: char,
primary: integer,
secondary: integer,
coexistence: integer,
exclusive: integer,
atleastone: integer,
key: integer,
constraint: integer,
funct: integer,
sem: string,
tech: string,
flag: integer,
@DATA_GR: data_object);

12.23 constraint
constraint

isa generic_object
type char 1-1
const_mem 0-∞ member_cst

A constraint object defines a constraint between two groups. Only the type field is required in the envi-
ronment of this object. The possible values of type are the five constants:

− INC_CONSTRAINT: Let g1 and g2 be two groups playing respectively the origin and target roles
for the referential constraint, g2 being a primary/secondary identifier group. Then all the compo-
nents of g1 (attributes and/or roles) must take their values in the domain built on the values of all
the components of g2.

− EQ_CONSTRAINT: Let g1 and g2 be two groups participating in an equality constraint, then the
inclusion constraint holds for both (g1,g2) and (g2,g1). Therefore, this constraint should not be
oriented: g1 and g2 play the same role, but, some physical models require that a group must be the
origin of the other one11.

− INCLUSION_CONSTRAINT: the constraint is an inclusion if each instance of the first group
must be an instance of the second group (the second group must not be an identifier, the inclusion
constraint is the generalization of the referential constraint).

− INV_CONSTRAINT: An inverse constraint must be declared between two identifier (primary or
secondary) groups made up of one object attribute each. It shows that the value the each object
attribute of each group is the owner of the other group.

− GEN_CONSTRAINT: the constraint is a generic constraint between any groups (without precon-
ditions).

More generally, a constraint is a property attached to a tuple of groups (g1,g2, ..., gn). Each component
of the tuple plays a special role in the constraint. The name of the role is specified in objects of type
member_cst. The constraints defined in DB-MAIN are binary and their roles have the same names:
OR_MEM_CST (for origin) and TAR_MEM_CST (for target).
For instance, if the group g1 (composed of the name and first_name attributes of an entity e1) is a
foreign key to a group g2 (composed of the N_F_names attribute), then g1 is the origin of an inclusion
constraint and the target is the group g2.

11. This constraint is usually implemented in SQL by a foreign key followed by a check. The orientation takes a sense here.

12.24 member_cst 89
To create a new constraint:
what := create(CONSTRAINT,

type: char,
flag: integer);0

12.24 member_cst
member_cst

isa generic_object
mem_role char 0-1 (="")
@const_mem 1-1 constraint
@gr_mem 1-1 group

The domain of the mem_role field is a character, its possible values are restricted to two constants:
OR_MEM_CST and TAR_MEM_CST. See section 12.23 for more details.
To create a new member_cst object:

what := create(MEMBER_CST,
mem_role: char,
flag: integer,
@CONST_MEM: constraint,
@GR_MEM: group);

12.25 collection
collection

isa generic_object
name string[L_NAME] 1-1
short_name string[L_SNAME] 0-1 (="")
sem string 0-1 (="")
tech string 0-1 (="")
@sch_coll 1-1 schema
coll_colet 0-∞ coll_et

Objects of type collection denote files, clusters, areas, ... Each collection is identified by its name and a
schema (sch_coll link).
To create a new object of type collection:

what := create(COLLECTION,
name: string,
short_name: string,
sem: string,
tech: string,
flag: integer,
@SCH_COLL: schema);

12.26 coll_et
coll_et

isa generic_object
@coll_colet 1-1 collection
@data_colet 1-1 data_object

90 Chapter 12 Objects Definition
Objects of this technical type represent many-to-many relationships between collections and
data_object instances, in particular between collections and entity types in an ERA schema. Therefore
the creation of these objects is derived from the attachment of an entity-type to a collection.
To create a new object of type coll_et:

what := create(COLL_ET,
flag: integer,
@COLL_COLET: collection,
@DATA_COLET: data_object);

12.27 cluster
cluster

isa generic_object
name string[L_NAME] 0-1 (="")
total integer 1-1
distinct integer 1-1
criterion string[L_CRITERION] 0-1 (="")
@entity_clu 1-1 entity_type
clu_sub 0-∞ sub_type

Objects of type cluster denote groups of distinct entity types being a specialization of a super-type
entity-type. The total and disjoint fields are boolean values characterizing the semantics of the group:

− total: is TRUE if all the instances of the super-type must be specialized by an instance of at least
one sub-type and FALSE otherwise.

− disjoint: is TRUE if each instance of the super-type can be specialized by an instance of at most
one sub-type and FALSE otherwise.

The criterion field allows users to specify a criterion in order to know by which sub-type the super-type
is specialized.
To create a new object of type cluster:

what := create(CLUSTER,
name: string,
total: integer,
distinct: integer,
criterion: string,
flag: integer,
@ENTITY_CLU: entity_type,
@CLU_SUB: sub_type);

12.28 sub_type
sub_type

isa generic_object
value string[L_VALUE] 0-1 (="")
@clu_sub 1-1 cluster
@entity_sub 1-1 entity_type

The technical object-type sub_type is the materialization of a many-to-many relationship-type between
a cluster and its sub-entity_types. The value field is the criterion (field of cluster) value by which sub-
types may be distinguished.
To create a new object of type sub_type:

12.29 role 91
what := create(SUB_TYPE,
value: string,
flag: integer,
@CLU_SUB: cluster,
@ENTITY_SUB: entity_type);

12.29 role
role

isa generic_object
name string[L_NAME] 1-1 (cfr ♦)
min_con integer 1-1
max_con integer 1-1
aggregation char 0-1 (=" ")
sem string 0-1 (="")
tech string 0-1 (="")
@rt_ro 1-1 rel_type
ro_etr 0-∞ et_role

♦ Objects of type role denote the roles played by the entity types in the relationship types. Each role is
identified by its name, its cardinalities (min_con and max_con) and the rel_type it depends on. The
values of the cardinality must be comprised between 0 and N_CARD which is equivalent to the infinite
value12. Although the name is mandatory, this field can be omitted if the following constraints are satis-
fied:
• the role is not a multi-entity role

∀r∈ROLE[...]{TRUE}: Length(ET_ROLE[...]{@RO_ETR:[r]})=1
• the name of the entity type that should play the new role, must not be a name of another role in the

relationship type.
If these constraints are satisfied, the name of the role is the name of the entity-type playing the role.
The field aggregation gives a particular meaning to the relationship type and to the role itself. The pos-
sible values of this field are:

− AGGREGATION_ROLE: It denotes an aggregation relationship type (should be binary). The role
having this aggregation value is played by the entity type is a part of another.

− COMPOSITION_ROLE: It denotes a composition relationship type (should be binary). The role
having this aggregation value is played by the entity type which is a component of another.

To create a new role:
what := create(ROLE,

name: string,
min_con: integer,
max_con: integer,
sem: string,
tech: string,
flag: integer,
@RT_RO: rel_type);

12. Only the maximum cardinality may take the infinite value and min_con <= max_con.

92 Chapter 12 Objects Definition
12.30 et_role
et_role

isa generic_object
@entity_etr 1-1 entity_type
@ro_etr 1-1 role

Each et_role object denotes a tuple (e, r) where e is an entity type and r is a role. Each tuple (e, r) means
that the entity type e participates in the role r. If several entity types participate in a role r, r is said to be
a multi-ET role.
To create a new et_role:

what := create(ET_ROLE,
flag: integer,
@ENTITY_ETR: entity_type,
@RO_ETR: role);

12.31 real_component
real_component

isa generic_object
real_comp 0-∞ component

The real_component type is a supertype of the attribute, role and group types. Its only function in the
repository is to be a component of a group.

12.32 proc_unit
proc_unit

isa data_object
mode char 0-1 (unknown)
type char 0-1 (unknown)
@owner_pu 1-1 owner_of_proc_unit
procunit_cpu 0-∞ cons_pu
pu_made_of 0-∞ elemnt
invoke_pu 0-∞ element
p_fct_call 0-∞ p_expression
p_decl 0-∞ environment

This object represent a processing unit, in the large. Valid values for the fields mode and type depend on
the context into which processing is used. More information about this can be found in Chapter 11.

what := create(PROC_UNIT,
name: string,
short_name: string,
mode: char,
type: char,
sem: string,
tech: string,
flag: integer,
where: proc_unit,
@SCH_DATA: schema,
@OWNER_PU: owner_of_proc_unit);

12.33 element 93
where shows where the new processing unit must be placed among its siblings. If this information is not
supplied, the new processing unit is put in first position in the list of processing units of the father, spe-
cified in @OWNER_PU. Otherwise, where must be another processing unit of the same father, and the
new processing unit will be created just after that specified one in the list of processing units of the
father.

12.33 element
element

isa generic_object
type char 1-1
description string 0-1 (="")
@pu_made_of 0-1 proc_unit
@invokes_pu 0-1 proc_unit
p_made_of 0-∞ rel_element
p_part_of 0-∞ rel_element

This object represents an element of a processing unit. Its genuine semantics depends on the context, as
described in Chapter 11. Exactly one of the two roles @pu_made_of and @p_made_of is mandatory.
But the create command below can only specify the @pu_made_of link, so, if a @p_made_of has to be
created, the user should create a rel_element object just after creating the element object.

what := create(ELEMENT,
type: char,
description: string,
flag: integer,
where: element,
@PU_BODY: proc_unit,
@INVOKES_PU: proc_unit);

where shows where the new element must be placed among its siblings. If this information is not sup-
plied, the new element is put in first position in the list of elements of the parent proc_unit, specified in
@PU_MADE_OF. Otherwise, where must be another element of the same processing unit, and the new
element will be created just after that specified one in the list of elements of the father.

12.34 rel_element
rel_element

isa generic_object
name string[L_NAME] 0-1 (="")
mode char 0-1 (=0)
type char 0-1 (=0)
sem string 0-1 (="")
tech string 0-1 (="")
@p_made_of 1-1 element
@p_part_of 1-1 element

This object denotes the decomposition of a processing unit element into its sub-elements. The type and
mode fields denote the kind of decomposition.

what := create(REL_ELEMENT,
name: string,
type: char,
mode: char,

94 Chapter 12 Objects Definition
sem: string,
tech: string,
flag: integer,
where: rel_element,
@P_MADE_OF: element,
@P_PART_OF: element);

where shows where the new rel_element must be placed among its siblings. If this information is not
supplied, the new rel_element is put in first position in the list of rel_elements of the father, specified in
@P_MADE_OF. Otherwise, where must be another rel_element of the same element, and the new sub-
element will be created just after that specified one in the list of sub-elements of the father.

12.35 p_expression
p_expression

isa generic_object
operator char 1-1
constant string 0-1 (="")
description string 0-1 (="")
@p_sub_expression_of 0-1 p_expression
p_sub_expression_of 0-∞ p_expression
@p_parameter 0-1 element
@p_fct_call 0-1 proc_unit
@p_act_arg 0-1 generic_object

This object denotes an expression. At least one of the two roles @p_parameter (the expression is part
of a processing unit element) or @p_sub_expression_of (a sub-expression part of a more complex
expression) must be defined in the creator. The expression can be either a constant (operator = ’C’), an
object of the repository (using @p_act_arg), an operation (operator = ’+’, ’-’,...) on sub-expression(s)
(using p_sub_expression_of), or a call to a function (using the link @p_fct_call).

what := create(P_EXPRESSION,
operator: char,
constant: string,
description: string,
flag: integer,
where: p_expression,
@P_SUB_EXPRESSION: p_expression,
@P_ACT_ARG: generic_object,
@P_PARAMETER: p_statement,
P_FCT_CALL: proc_unit);

where shows where the new p_expression must be placed among its siblings. If this information is not
supplied, the new p_expression is put in first position in the list of p_expressions of the father, specified
in @P_PARAMETER or in @P_SUB_EXPRESSION. Otherwise, where must be another p_expression
of the same element or p_expression, and the new p_expression will be created just after that specified
one in the list of p_expressions of the father.

12.36 environment 95
12.36 environment
environment

isa generic_object
name string[L_NAME] 0-1 (="")
type char 1-1
mode char 0-1 (=0)
sem string 0-1 (="")
tech string 0-1 (="")
@p_decl 1-1 proc_unit
@st_env 1-1 state

An environment object shows which states of any other object (generally data_object) is part of the
environment (local variables, parameters,...) of a processing unit.

what := create(ENVIRONMENT,
name: string,
type: char,
mode: char,
sem: string,
tech: string,
flag: integer,
where: p_environment,
@P_DECL: proc_unit,
@P_GO_ENV: generic_object);

where shows where the new environment must be placed among its siblings. If this information is not
supplied, the new environment is put in first position in the list of environments of the proc_unit. Othe-
rwise, where must be another environment of the same proc_unit, and the new environment will be crea-
ted just after that specified one in the list of environments of the parent proc_unit.

12.37 state
state

isa data_object
@go_st 1-1 proc_unit
st_env 1-1 environment

A state object denotes a particular state of any generic_object. For instance, an entity_type may repre-
sent a cloth, and two states of the cloth can be "new" when it has just been made, and "delivered" when
it has been delivered to a shop.
The following commande should be used to create a new state:

what := create(STATE
name: string,
short_name: string,
sem: string,
tech: string,
flag: integer,
@GO_ST:generic_object,
@SCH_DATA: schema);

96 Chapter 12 Objects Definition
12.38 consumption
consumption

isa data_object
cons_cpu 1-1 cons_pu
cons_cres 0-1 cons_res
cons_crole 0-1 cons_role

A consumption object shows which resource plays which role (res_role) in a processing unit
(proc_unit). Three technical objects have been implemented to show respectively how many resources
can be consumed (cons_res), how many instances of the role of the resource can be consumed
(cons_role), and how many processing units can consume these resources playing this role (cons_pu).
Note that both the cons_res and the cons_role are optional.
To create a consumption:

what := create(CONSUMPTION
name: string,
short_name: string,
sem: string,
tech: string,
flag: integer,
CONS_CPU: cons_pu,
CONS_CRES: cons_res,
CONS_CROLE: cons_role);

12.39 cons_pu
cons_pu

isa generic_object
name string[L_NAME] 0-1 (="")
min_card integer 0-1 (=1)
max_card integer 0-1 (=1)
sem string 0-1 (="")
tech string 0-1 (="")
@procunit_cpu 1-1 proc_unit
@cons_cpu 1-1 consumption

A cons_pu object shows how many processing units can play a role with the consumption.
To create a cons_pu:

what := create(CONS_PU
name: string,
min_card: integer,
max_card: integer,
sem: string,
tech: string,
flag: integer,
@PROCUNIT_CPU: proc_unit,
@CONS_CPU: consumption);

12.40 cons_res 97
12.40 cons_res
cons_res

isa generic_object
name string[L_NAME] 0-1 (="")
min_card integer 0-1 (=1)
max_card integer 0-1 (=1)
sem string 0-1 (="")
tech string 0-1 (="")
@resource_cres 1-1 resource
@cons_cres 1-1 consumption

A cons_res object shows how many resources can play a role with the consumption.
To create a cons_res:

what := create(CONS_RES
name: string,
min_card: integer,
max_card: integer,
sem: string,
tech: string,
flag: integer,
@RESOURCE_CRES: resource,
@CONS_CRES: consumption);

12.41 cons_role
cons_role

isa generic_object
name string[L_NAME] 0-1 (="")
min_card integer 0-1 (=1)
max_card integer 0-1 (=1)
sem string 0-1 (="")
tech string 0-1 (="")
@resrole_crole 1-1 res_role
@cons_crole 1-1 consumption

A cons_role object shows how many resource roles can play a role with the consumption.
To create a cons_role:

what := create(CONS_ROLE
name: string,
min_card: integer,
max_card: integer,
sem: string,
tech: string,
flag: integer,
@RESROLE_CROLE: res_role,
@CONS_CROLE: consumption);

98 Chapter 12 Objects Definition
12.42 resource
resource

isa data_object
type char 1-1
resource_cres 0-N cons_res
re_gen 0-N re_isa
re_spec 0-N re_isa
cp_res 0-N can_play

A resource object can represent any human or material resource need by a processing unit, like pro-
grammers, consultants, memory, printers, coffee pot,...
To create a resource:

what := create(RESOURCE
name: string,
short_name: string,
sem: string,
tech: string,
type: char,
flag: integer,);

12.43 re_isa
re_isa

isa generic_object
name string[L_NAME] 0-1 (="")
sem string 0-1 (="")
tech string 0-1 (="")
@re_gen 1-1 resource
@re_spec 1-1 resource

The object type re_isa is used to define resources in a hierarchical way. For instance, a computer tech-
nician is an employee.
To create a re_isa object:

what := create(RE_ISA
name: string,
sem: string,
tech: string,
flag: integer,
@RE_GEN: resource,
@RE_SPEC: resource);

12.44 res_role 99
12.44 res_role
res_role

isa data_object
resrole_crole 0-N cons_role
ro_gen 0-N ro_isa
ro_spec 0-N ro_isa
cp_rol 0-N can_play

A res_role object represents a role that a resource can play. For instance, An employee can either play
the role of analyst or programmer.

what := create(RES_ROLE
name: string,
short_name: string,
sem: string,
tech: string,
flag: integer,);

12.45 ro_isa
ro_isa

isa data_object
@ro_gen 1-1 res_role
@ro_spec 1-1 res_role

The object type ro_isa is used to define roles of resources (res_role) in a hierarchical way. For instance,
a project leader is an analyst.
To create a re_isa object:

what := create(RO_ISA
flag: integer,
@RO_GEN: res_role,
@RO_SPEC: res_role);

12.46 can_play
can_play

isa data_object
@cp_res 1-1 resource
@cp_rol 1-1 res_role

The object type can_play is aimed at storing a list of all the roles (res_role) that a resource (resource)
can play. When a schema uses objects of both types resource and res_role, each consumption of a
resource, linked by cons_res, playing a res_role, linked by cons_role, should correspond to a can_play
linking the same resource, by cp_res, to the same res_role, by cp_rol.
To create a can_play object:

what := create(CAN_PLAY,
flag: integer,
@CP_RES: resource,
@CP_ROL: res_role);

100 Chapter 12 Objects Definition
12.47 owner_of_proc_unit
owner_of_proc_unit

owner_pu 0-∞ proc_unit

owner_of_proc_unit is a virtual object type which is inherited by all the object types that can own pro-
cessing units (proc_unit). Objects of that type only cannot exist, and so cannot be created.

12.48 meta_object
meta_object

isa generic_object
name string[L_NAME] 1-1
type integer 1-1
sem string 0-1 (="")
@sys_mo 1-1 system
mo_mp 0-∞ meta_property

A meta_object object can be created for two purposes:
• To mirror an object type of the repository, in order to extend this object type by adding meta-proper-

ties to it (see 12.49). When a project is created in DB-MAIN, a series of meta_object objects are
automatically created. Voyager 2 programs can access them, but should not modify them (which can
result in crashing DB-MAIN).

• To extend the repository of DB-MAIN. A Voyager 2 program can add as many objects types as nee-
ded to the repository, for its own needs, but objects of these types will not be taken in charge by DB-
MAIN and will not be shown on screen. For instance, a program could add new object types like
agent, module,…

A description of the fields follows:
• name: the name of the object type ("entity_type", "system", "si_attribute", …).
• sem: a semantics description of the meta-object, an informal text.
• type: an integer constant identifying the type of the object type. Predefined constants are SCHEMA,

ENTITY_TYPE, GROUP,…(cfr. 2.4).
In order to create a new meta_object, the following command should be used:

what := create(META_OBJECT,
name: string,
type: integer,
sem: string,
flag: integer,
@SYS_MO: system);

12.49 meta_property 101
12.49 meta_property
meta_property

isa generic_object
name string[L_NAME] 1-1
type integer 1-1
updatable integer 0-1 (=TRUE)
predefined integer 0-1 (=FALSE)
multi integer 0-1 (=FALSE)
hidden integer 0-1 (=FALSE)
sem string 0-1 (="")
@mo_mp 1-1 meta_object

If an object type is described by an instance of meta_object, it is possible to dynamically add new fields
to it (cfr. 16.2 for more details). These fields are named meta-properties. Each meta-property is descri-
bed by an instance of the meta_property object type.
A description of the fields follows:
• name: The name of the property.
• type: The type of the property. It cabn be one of the constants listed in 12.18: integer: NUM_ATT,

string: VARCHAR_ATT, char: CHAR_ATT, float13 : FLOAT_ATT, boolean: BOOL_ ATT.
• updatable: This field is an integer value used as a boolean value. If the value is equivalent to the

constant TRUE, then the meta-property may be updated in the DB-MAIN environment. Otherwise,
the value of the meta-property can only be read and not modified. However, Voyager 2 programs
can always modify this field, no martter if it is updatable or not.

• multi: This field is an integer value used as a boolean value. If this field has the value TRUE, the
meta-property may be multivalued. The value of such a meta-property is then a list of values of the
same type, defined in the type field.

• predefined: This field is an integer value used as a boolean value. If this field has the value TRUE,
then the possible values of such a meta-property must be taken in a predefined list of values. For ins-
tance, a meta-property called gender could have as predefined values female or male. The predefi-
ned values must be compliant with the type of the meta-property and are stored in the semantics
description of the meta-property as a textual property. Note that although the choice of a predefined
value is enforced in the DB-MAIN tool, there is no automatic validation in Voyager 2, so the pro-
grammer should always take care of taking values in the list only.

• hidden: This field is an integer value used as a boolean type. When it is TRUE, the meta-property is
predefined by DB-MAIN for its own needs. It can normally not be accessed by DB-MAIN users.
Voyager 2 programs should be very careful when modifying them, which can crash DB-MAIN.

• sem: A semantics description of the dynamic property.
A new meta_property can be created by the following command:

what := create(META_PROPERTY,
name: string,
type: integer,
sem: string,
updatable: integer,
predefined: integer,
multi: integer,
hidden: integer,
flag: integer,
@MO_MP: meta_object);

13. This type is not yet supported by Voyager 2.

102 Chapter 12 Objects Definition
The following example shows how to create meta-properties.

meta_property: mp;
meta_object: mo;
entity_type: ent;

begin
 // add the meta-property ’local’ to each collection
 // the meta-property is predefined and the allowed values are:
 // Bruxelles, Paris, Madrid, London
 mo:=GetFirst(META_OBJECT[mo]{mo.type=COLLECTION});
 mp:=create(META_PROPERTY,name:"local",type: VARCHAR_ATT,
 predefined:1,@MO_MP:mo);
 mp.sem:=SetProperty(mp.sem,"VALUES",
 "Bruxelles\nParis\nMadrid\nLondon");
 // add the meta-property ’owners’ to each entity-type
 // the meta-property is multivalued
 mo:=GetFirst(META_OBJECT[mo]{mo.type=ENTITY_TYPE});
 mp:=create(META_PROPERTY,name:"local",type: VARCHAR_ATT,
 multi:1,@MO_MP:mo);
 ...
 // let ’ent’ be an entity-type
 // add ’tintin’ to the list of owners.
 ent."owners":=ent."owners"++["tintin"];
 print(ent."owners");
end

12.50 user_viewable
user_viewable

object_view 0-∞ user_view
uv_nnn 0-∞ nn_note

The user_viewable object type is a virtual type inherited by object types which are shown in their own
window in DB-MAIN, such as schema.
Some objects of some types, such as note or si_attribute for example, can be shown in several views.
For instance, a si_attribute object can be shown in a UML class diagram, and also in a UML activity
diagram. In each diagram, this si_attribute should have different positions, stored in different
user_object objects (see 12.2). One of the user_object object is linked to the user_viewable object inhe-
ritating the schema of type UMLCLASS_DIAGRAM, and a second user_object is linked to the
user_viewable inheritating the schema of type UMLACTIVITY_DIAGRAM. Furthermore, different
notes (note) can be attached to the same si_attribute in the various views. Several objects of type
nn_note will link the various note objects to the si_attribute and to the user_veiwable objects corres-
ponding to the view into which the notes must appear.

12.51 user_view 103
12.51 user_view
user_view

isa generic_object
name string 1-1
type char 1-1
font_name string 1-1
font_size integer 1-1
mark_plan integer 1-1
reduce integer 1-1
text_font_name string 1-1
text_font_size integer 1-1
xgrid integer 1-1
ygrid integer 1-1
zoom integer 1-1
@object_view 1-1 user_viewable
uv_uo 0-∞ user_object

This object denotes the graphical representation of a product (schema, document, or a system). The pro-
grammer is not allowed to create new user views.
A description of the fields follows:
• The font_name and font_size attributes denote the font used in graphical views.
• The text_font_name and text_font_size attributes denote the font used in textual views.
• The mark_plan attribute is the current mark plan used in a schema (see page 76 for more details).
• The reduce attribute is the current reduce factor (in percent) in the graphical views.
• The zoom attribute is the current zoom factor (in percent) in the graphical views.
• The xgrid and ygrid attributes denote the size of the page drawn in the graphical views.

12.52 product_type
product_type

isa generic_object
title string 1-1
min_mul integer 1-1
max_mul integer 1-1
description string 0-1 (="")

This object type is used to give a type to products created by Voyager 2 procedures used with an MDL
method [7]. product_type are read-only objects: their fields can be read but their values cannot be chan-
ged and new product_type cannot be created.
A description of the fields follows:
• title: the name of the product type.
• min_mul: the minimum number of products that should be created with this type.
• max_mul: the maximum number of products that should be created with this type.
• description: a small text describing the semantics of the product type.
Note that min_mul and max_mul are guidelines which are not enforced.

104 Chapter 12 Objects Definition
12.53 schema_type
schema_type

isa generic_object

A type for schema created within an MDL method [7].

12.54 document_type
document_type

isa generic_object

A type for document created within an MDL method [7].

Chapter 13

Predicative Queries

13.1 Introduction
Voyager 2 provides predicative queries to access the repository of DB-MAIN. The aim of these queries
is to hide and to factorize boring and technical details when querying the repository. With predicative
queries, the programmer has not to tell how to obtain a result but simply what he wants. These queries
guarantee the same performance as a hand-written algorithm. Although navigational queries are provi-
ded too in Voyager 2 (see Chapter 14), the use of predicative queries is recommended.
Examples:
To get all the optional attributes of a project, the following query will return the expected result in a list:

ATTRIBUTE[att]{att.min_rep=0}

This query is an expression that can be used everywhere a list-expression is expected. Another form of
query is:

for dat in DATA_OBJECT[dat]{@SCH_DATA:[GetCurrentSchema()]}
do {
 .
 .
 .
};

this example shows how to iterate through all the data-objects from the current schema.
Finally, a more complex query:

list_result:=DATA_OBJECT[dat]{@SCH_DATA:[GetCurrentSchema()]
 with soundex(dat.name,"bank")};

The result is the list of data-objects from the current schema having a name similar to "bank"1.
There are two kinds of predicative queries: global scope and restricted scope queries. A formal specifi-
cation is given in the following sections.

1. soundex is not a primitive of Voyager 2.

106 Chapter 13 Predicative Queries
13.2 Specifications
All the queries have to respect the following syntax:

〈query〉 ← 〈ent-expr〉 "["〈variable〉 "]" "{" 〈constraint〉 "}"
where
• 〈ent-expr〉 is an integer expression denoting an object of the repository. Although any integer expres-

sion is valid, programmers will usually use constants from the table 2.4. The meaning of each cons-
tant has been explained in the chapter 12.

• 〈variable〉 denotes a variable whose type must be exactly the same as the object type represented by
the 〈ent-expr〉 expression2.

• 〈constraint〉 is used to sort out the pertinent objects.
Once the query has been evaluated, the value of the 〈variable〉 is undefined. During the evaluation, the
program must not modify its content. The scope of the 〈variable〉 is just a portion of the 〈constraint〉.
This last characteristics will be explained below. The 〈variable〉 is called the iterator for convenience.

13.2.1 Global Scope Queries
Global-scope queries look the whole repository for objects satisfying the constraint. The constraint,
any integer expression, is used as a boolean expression. It is in the scope of the iterator.
For instance, the query

ENTITY_TYPE[e]{TRUE}

will look for all the entity-types of the project. All these entity-types are then stored in a list.
The following example shows how to use the variable specified in the query to express more accurate
constraints:

ATTRIBUTE[a]{a.min_rep=1 and a.max_rep=1}

The query looks for all the single-valued mandatory attributes of the project.
Objects having one or more sub-types cannot be used in global scope queries. If such a cuse occurs, the
query will return an empty list.

13.2.2 Restricted Scope Queries
In restricted-scope queries, constraints have two components: the link-constraint and the boolean-cons-
traint. Although the first part is mandatory, the second one is not. The syntax of this constraint is:

〈constraint〉 ← 〈link-constraint〉 [" with" 〈boolean-constraint〉]
〈link-constraint〉 ← 〈link-expr〉 : 〈list-fathers〉
〈boolean-constraint〉 ← 〈integer-expression〉
〈link-expr〉 ← [" @"] 〈integer-expression〉
〈list-fathers〉 ← any expression of type list

where:
• The 〈link-expr〉 is an integer expression denoting a link between two objects. Usually, programmers

will use the constants of table 2.5 rather than complex expressions. Each constant is explained in
chapter 12. Because links are oriented, it suffices to reverse the sign of a 〈link-expr〉 to reverse the
corresponding link. In queries, the special symbol "@" is equivalent to the unary operator "-", and
programmers are encouraged to use it in order to make the query more readable. Therefore, if L is a
constant denoting a link, then L ≡ @@L.

2. Although <ent_expr> is an expression whose value can be changed at execution time, the <variable> must be typed at
compilation time and its type cannot be changed during execution.

13.2 Specifications 107
• The 〈ent-expr〉 expression denotes an object type (see above). This object type must be exactly the
same as the one playing the role @L, if L is the value of "〈link-expr〉".

• 〈list-fathers〉 denotes any expression the evaluation of which returns a list. Let l be such a list and let
L be the value returned by the evaluation of "〈link-expr〉". Then each item of the list l must be com-
patible with the object type playing the role @L. 〈list-fathers〉 is not in the scope of the iterator.
Example:
If the value of L is @PFROM, then the object type playing the role @@PFROM (≡ PFROM) is pro-
duct. All the object types compatible with product are: document, schema and generic_object3.

• The 〈boolean-constraint〉 must be preceded by the with keyword. This part is optional in the cons-
traint. This expression is in the scope of the iterator and can use it.

For example, let A, A0, A1, B, B0 and B1 be object types, and a, a0, a1, b, b0 and b1 be their respective
fields. Let the following relations hold: A1 isa A, A isa A0, B1 isa B and B isa B0. Let L be a link

between A and B: A L B. This schema is depicted in figure 13.1.

A0 B0

A

A1

B

B1

L

Figure 13.1 - Acadamic Schema.

Exercises: Are these requests correct?
a) A[α]{L:β1, β2}

where A:α; B:β1, β2

b) A0[α0]{L:β1, β2}
where A0:α0; B:β1, β2

c) A[α]{L:β0,β1}
where A:α; B0:β0; B1:β1

d) B:[β]{@L:A[α]{α.a>=3} with β.b<=5 and β.b>0}
where A:α; B:β

e) A[α]{L:B[β]{@L:A[α1]{α1.a=β.b} with β.b=3}}
where A:α,α1; B:β

f) A[α]{L:B[β]{@L:A[α]{α.a=6} with β.b=3}}
where A:α; B:β

g) A[α]{L:B[β]{@L:A[α1]{α1.a=6} with β.b=3}}
where A:α,α1; B:β

h) A[α]{L:B[β]{β.b=1}++B[β]{@L:A[α1]{α1.a=2}}}
where A:α,α1; B:β

3. Note that each document or schema is a product, but all the generic objects are not product. So, if the list contains generic
objects, The program must have the insurance that they are all compatible with the product object type.

108 Chapter 13 Predicative Queries
Solutions:
a) YES: without any comment.
b) NO: L is a role played by the object type A. A0 cannot be used in place of A in this query.

c) YES: The list of fathers [β0,β1] may be composed of any value for which the type is compatible
with the object type playing the role @L.

d) YES: without any comment.
e) NO: The constraint α1.a=β.b is not in the scope of the β iterator. The value of β is undefined.

f) NO: The same variable α is used two times as iterator in the query.
g) YES: without any comment.
h) YES: The query asks for all the objects from A that play the role L for one element of the list

B[β]{β.b=1}++B[β]{@L:A[α1]{α1.a=2}}. This list is a new expression, independent of the
query. This expression is made of two queries. Their evaluations return two lists. The concatena-
tion of these two lists is used as a "list of fathers" in the main query. Note: this query is not very
efficient. How can it be rewriten more efficiently?

Chapter 14

Iterative Queries

Although predicative queries (see Chapter 13) are very useful, they cannot be used in every situation.
For this reason, Voyager 2 offers basic primitives to access the content of the repository more directly:
_GetFirst(), _GetNext(), TheFirst and TheNext.

function generic_object: o TheFirst (integer: t)

Precondition. t must be an integer expression. The evaluation of t must return a value which deno-
tes an object type, represented by a constant of table 2.4.
Postcondition. o is the first object of type t found in the project. If there is no object of type t, then o
is void.

function generic_object: o TheNext (integer: t, any: p)

Precondition. t must be an integer expression. The evaluation of t must return a value which deno-
tes an object type, represented by a constant of table 2.4. p must be a reference to an object type t. p
must be different of void.
Postcondition. o is the object that follows p in the list of objects of type t. If p is the last object, then
o is void.
on error: The behaviour is uncertain.

function any: s _GetFirst (integer: l, any: f)

Precondition. The value of l must denote a link (see table 2.5). f must be different of void and its
type must be compatibe with the object type that plays the role l.
Postcondition. If [s1,..., sn] is the list of objects linked to f by l, then o is the first element of this list.
If the list is empty, then s is void. The type of o is the type of the object type that plays the role @l.
on error: The behaviour is uncertain.

function any: b _GetNext (integer: l, any: f, any: s)

Precondition. the value of l must denote a link (see table 2.5). f is an object whose type must be
compatibe with the object type that plays the role l. s must be one of the objects linked to f by l.
Postcondition. Let [s1,...,si,si+1,...,sn] be the list of all the objects linked to f by l, and let i be the
index of s (si = s). If i < n then o = si+1, and if i = n then o = void.
on error: The behaviour is uncertain.

110 Chapter 14 Iterative Queries
It is recommended to avoid the use of these functions as much as possible since predicative queries
have the same performance and are less error prone.
Example:

This example shows how to use the _GetNext function:

entity_type: ent;
attribute: att;
begin
 ent:= one entity type expression;
 for att in ATTRIBUTE[att]{@OWNER_ATT:[ent]}
 do {
 print(att.name);
 if IsNoVoid(_GetNext(OWNER_ATT,ent,att)) then {
 print(’,’);
 };
 };
end

Chapter 15

Object Removal

The removal of an object from the repository is done by a call to the remove procedure. This procedure
requires one argument: the object to remove. This procedure will remove the specified object as well as
other objects, in cascade, in order to preserve the integrity of the repository. For instance, if a rel-type is
removed, all its attributes and all the roles played by entity types in this rel-type will be removed too.

procedure remove (object: o)

Precondition. o may be any object of the repository. This value cannot be void.
Postcondition. The object and all the other objects that depend on it are removed.

Example:

remove(GetFirst(ENTITY_TYPE[ent]{name="CLIENT"}));

Chapter 16

Properties

Although the repository of DB-MAIN is statically defined with C++ classes, it can be dynamically
extended with Textual Properties and Dynamic Properties.
These two kinds of properties have the same aim: "to add new fields to one object-type in the reposi-
tory". These two technics are completely different. They will be explained in this chapter.

16.1 Textual Properties
Textual properties are new properties attached to an object of the repository. These information are sto-
red in either the semantic description field or in the technical description field of the object. These pro-
perties are not completely supported in Voyager 2, but two functions can help the programmer to
manage them: GetProperty and SetProperty. Each function is fully described hereafter. For an example
of a property, let us suppose that o is one object (ex: an entity-type variable) whose technical descrip-
tion is :

"This object denotes a car bought by a firm.ø
Each car is pink.ø
eof"

To add a new property to some entity-types, like "the average number of instances in the database1",
The technical description can be updated in the following way:

"This object denotes a car bought by a firm.ø
Each car is pink.ø
#average=26ø
eof"

This information can be retrieved by a lexical analysis of the text.
Conventions are defined in DB-MAIN to represent this kind of information inside texts. The definition
is:

A textual properties is made up of two parts: the field and the value. The representation of these
information can occur anywhere in a text and must respect the following rules: the field is the list of
characters found between the ’#’ character placed at the beginning of a line, and the first occurrence
of the ’=’ character placed on the same line. All the characters are useful and their interpretation is

1. WIth a relational database, the terms "tuple" or "line" should be used instead of "instance".

114 Chapter 16 Properties
case sensitive. The value associated to the field is the list of characters found just after that ’=’ cha-
racter, until the first ’#’ character starting a new line, or until the end of the text. In the first case, the
’#’ character and the preceeding new-line character do not belong to the value. If several properties
with the same field exist in the text, only the first occurrence is taken into account.

The two functions defined hereafter help the programmer to manage the textual properties stored in the
semantic and technical descriptions of any object (and in any text in general).

function string: value GetProperty (string: s, string: field)

Precondition. Ø
Postcondition. If the field field is found in the text s, then the associated value is returned to the
user. Otherwise, the constant PROP_NOT_FOUND is returned. This message is distinct of any pos-
sible value The text s is left unmodified. If the text is corrupted, then the message PROP_CORRUP-
TED is returned.

function string: r SetProperty (string: s, string: field, string: value)

Precondition. Ø
Postcondition. This function returns the string s where the value associated with the field field has
been replaced by the text value. If the field is not present in s, it is added at the end of s, with its asso-
ciated value.

Example:

schema: sch;
integer: i;
string: s;
begin
 sch:=GetCurrentSchema();
 s:=GetProperty(sch.sem,"color"); (1)
 if s=PROP_NOT_FOUND then { i:=0; }
 else { i:=StrStoi(s); };
 sch.sem:=SetProperty(sch.sem,"color",StrItos(-i));
end (2)

At the point (1), the semantic description of the schema sch is:

This schema will be printed on our printer with the color:↵
#color=4↵
#end↵
But if the color is negative, this color is used for the↵
background! ↵
eof"

and after the execution of the program the semantic description of the schema has been updated with
the opposite of the color field:

"This schema will be printed on our printer with the color:↵
#color=-4↵
#end↵
But if the color is negative, this color is used for the↵
background! ↵
eof"

Let us note that the special line "#end" is used to mark the end of the property. This line could have
been replaced by any other property like this:

"This schema will be printed on our printer with the color:↵
#color=-4↵
#font=Arial↵

16.2 Dynamic Properties 115
#end↵
But if the color is negative, this color is used for the↵
background! ↵
eof"

Last but not least, this last function retrieves all the properties from a string with their associated values
and put them in a list returned to the user:

function list: l GetAllProperties (string: s)

Precondition. Ø
Postcondition. l is a list of pairs [p1,v1,p2,v2,...,pn,vn] where vi is the value of a property called pi. The
pi are all the properties present in the text s.

16.2 Dynamic Properties
16.2.1 Introduction
Dynamic properties is the second mechanism provided in DB-MAIN to extend the repository. This is
the mechanism of choice, the one that should be prefered by any DB-MAIN user.
The repository is described in one of its parts called "meta-repository". This part contains object types:
meta_object and meta_property. To some object types of the repository corresponds one instance of the
meta_object object type. Similarly, each attribute/property of an object type is described by an instance
of the meta_property object type. Chapter 12 describes these two object types in more details.
This meta-description is very interesting since it allows DB-MAIN users to dynamically extend the
repository. It suffices to add a new instance of meta_property and to link it to an instance of
meta_object in order to add a new property to the object type described by the meta-object. Once this is
done, the new property is available both in the CASE tool and in Voyager 2.

16.2.2 Explanation
Dynamic properties can be illustrated by an example. In a company, ER-schemas are defined by several
people at the same time. To manage this complexity, it is decided to add to each entity type and to each
relationship type a new field indicating who added this object to the schema.
First, a new property should be added to the entity_type object. This property will represent a person
("Albert", "Bill", "Jessica", …), its type will be string. The project leader can do it by using the CASE
tool, with the menu File → Meta... → Properties. He can also do it with a Voyager 2 program:

meta_object: mo;
meta_property: mp;
begin
 mo := GetFirst(META_OBJECT[mo]{mo.type=ENTITY_TYPE});
 mp:=create(META_PROPERTY,name:"owner",type: VARCHAR_ATT,@MO_MP:mo);
 ...
end

A new property named "owner" is now added to the entity_type object. Every entity-type of the project
has a new field initialized with an empty string. A similar work can be done with rel_types.
If the entity type "CLIENT" is created by Mr Sherlock Holmes, the new field can be set in this way:

entity_type: ent;
...
 ent:=GetFirst(ENTITY_TYPE[ent]{ent.name="CLIENT"});
 ent."owner":="Sherlock Holmes";
 ...
 print([ent.name," has been created by ",ent."Owner",’ \ n’]);
end

116 Chapter 16 Properties
Remark: a dynamic property can be referenced like any other field with two exceptions:
1. the name of the field is between double quotes. It is a string.
2. the mechanism is not case sensitive.
The sentence found after the "." may be any expression. If the evaluation of the expression returns an
integer, then the field is static, otherwise the value should be a string, and the field is dynamic. When
the field is static (name, short_name, sem, tech, min_rep,...), the name of the field is predefined in
Voyager 2 as an integer constant.

PART III

MODULAR PROGRAMMING

Chapter 17

Library and process

One of the main innovations of the version 3.0 of the Voyager 2 language is the ability to use Voyager 2
programs as libraries or as processes, due to a new architecture of the abstarct machine used to run
Voyager 2 programs. This chapter explains how to use these characteristics.

17.1 The New Architecture
The abstract machine is composed of two memory blocks. The code of a program (ie. the .oxo program)
is stored in the first one, and the second one is the memory used during the execution of the program.
They are respectively called the image and the stack. For example, the program "foo.oxo" can be exe-
cuted. It can be loaded and stored in one or many images. Once the program is loaded, it can be execu-
ted. A stack is created as a working space for the new process. But, from the same image, another
process can be run which needs another stack to be created. So, two stacks are created for a single
image. But the architecture allows another program to be loaded, and so a new process and a new stack.
The situation is depicted in figure 17.1.

image1 image2

stack1 stack2 stack3

Figure 17.1 - This schema depicts the memory state with two programs and three running processes.

An image stores all the instructions of a program, and therefore each function or procedure has its
representation inside the image. It is possible to execute either the whole program (ie. the body) or sim-
ply one function or one procedure (from DB-MAIN assistants, for instance).
As long as a stack is preserved, the "memory" of the process is preserved. So, if one process is execu-
ted, its global variables will be left in some state (S) at the end of its execution, and the same state will
be retrieved at next execution.

120 Chapter 17 Library and process
With this architecture, two new types have been added to the language. The first one is program. A
value of type program denotes a process. Once a variable of this type is correctly initialized, the asso-
ciated program can be executed. The second type is lambda1. It denotes an entry in the image of a spe-
cific program corresponding to a procedure or a function. Such a value, once initialized, can be used to
start the execution of the associated function or procedure using the stack of the process. These two
types are presented in more details in section 17.2.

17.2 Voyager 2 Process
The first step in the use of a process is the declaration of a variable of type program.

program: p;

Once this variable is declared, it can be initialized with the use instruction.

p := use("c:\\foo.oxo");

The use instruction has only one argument, a string, which denotes the program to be loaded into a
newly created image. Once the p variable is initialized, the program can be called in such a way:

p!(a1,...,an);

The ! character is a suffix unary operator. a1,...,an are values passed as arguments to the process.

A new characteristic of Voyager 2 is that a program can return a value, and its type does not have to be
specified. Hence, a program can either be executed as a procedure (an instruction) or as a function (an
expression) depending on the usefulness of the returned value in the calling program2. So, another call
to the program foo.oxo is:

v := p!(a1,...,an);

Functions and procedures can be called separately. The first step to call such a procedure is to get a
"handle" to the function from the program/process. This is done with the binary operator :: . The left
operand denotes the process, and the right operand is a string that denotes the name of the function or
the procedure. The result of this operator is a value of type lambda. This result can be stored in a varia-
ble for later use. This can be done as follows:

lambda: fct;
...
fct := p::"my_function";

where the fct variable is declared of type lambda. Once this variable is initialized, it can be used to call
the function in the following way:

x := fct::(y1,...,ym);

The suffix unary operator :: calls and executes the function "my_function" inside the process p. The
values y1,..., ym denote the arguments of the function. The way to execute a procedure is similar.

So a complete program could be:

program: p;
lambda: fct;

1. The "lambda" term derives from an area of mathematical logic called the "lambda calculus" in which many of the theori-
cal foundations of functional languages are based [4], [2]. lambda expressions in Voyager 2 have very few common cha-
racteristics with this concept but the author did not have enough imagination to invent a new term.

2. This approach is close to the philosophy of the C language, where functions can be used as procedures.

17.2 Voyager 2 Process 121
string: result;

begin
 p:=use("c:\\foo.oxo");
 fct:=p::"FormatDate";
 result:=fct::(13, "Feb", 1968);
 print(result);
end

The following program is more concise and is strictly equivalent to the previous one:

begin
 print((use("c:\\foo.oxo")::"FormatDate")::(13, "Feb", 1968));
end

The second form shows that program and lambda values can be used anywhere where such types are
expected.
After examining the calling programs, it is interesting to have a closer look at the called functions and
procedures. In fact, they look like any other V2 program. The only difference is that functions or proce-
dures that can be called from outside must be preceded with the export keyword. So the FormatDate
function declaration should have the following syntax:

export function string FormatDate(integer: d, string: m, integer: y) ...

The syntax of a procedure is the same. The export keyword allows programmers to define functions for
private use and other ones with unlimited access.
Another important principle is the preservation of the stack as long as it could be needed to execute the
process or a function or a procedure attached to this process. This can be shown by the two following
programs:

/*******************/
/* calling program */
/*******************/

program: p;
lambda: fct;

begin
 p:=use("c:\\foo.oxo");
 fct:=p::"nestor";
 p!();
 print(fct::(1));
 print(fct::(3));
end

and

/***/
/* called program. Stored in file c:\foo.oxo */
/***/
integer: n;

export function integer nestor(integer: a){
 n:=n+a;
 return n;
}

begin
 n:=1;
end

122 Chapter 17 Library and process
The execution of the first program calls the body of the foo program and stores 1 into the global varia-
ble n. Then, the function nestor is called. This function uses the variable n from the stack in the state
left by the previous execution. In the example, n is 1 and the function returns 1+1=2. The second call
returns 2+3=5.
Several processes can be initialized from a program. For instance, if the previous calling program is
rewritten as follows, its execution prints 2 and 4 as a result, because the execution of the first function
does not influence the stack of the second function.

program: p1,p2;
lambda: fct1,fct2;

begin
 p1:=use("c:\\foo.oxo");
 p2:=use("c:\\foo.oxo");
 fct1:=p1::"nestor";
 fct2:=p2::"nestor";
 p1!();
 p2!();
 print([fct1::(1),fct2::(3)]);
end

A program called from another program has to retrieve arguments and return a result. In the following
extract, the "foo.oxo" program is called two times. The first call tests the result of the program, which
represents an error code, and displays a message if necessary. For the second call, the programmer is
more confident into the result and does not test the error code.

program: prog;
begin
 prog:=use("c:\\foo.oxo");
 if prog!(1,2,3)=0 then {
 print("error message");
 }
 prog!(4,5);
end

The number of arguments may change from one call to another. Let the called program, "foo.oxo", be
defined as:

integer: sum,i;
begin
 if Length(Environment) then {
 for i in Environment do {
 sum:=sum+i;
 }
 print(sum);
 return 1;
 } else {
 return 0;
 }
end

This version contains two important changes from previous versions:
1. The global variable Environment is not defined in the program although it is used. This variable is

predefined in Voyager 2 and denotes a list. This variable is initialized with the list of the arguments
present in the call. This variable can be used as any other variable.

2. The return instruction is now allowed in the body of the program. It returns the result of the calling
program. The type of this value is not specified and can be of any type (integer, string, list, ...).

17.3 Libraries 123
The user does not have not to care about process unloading. Like for strings and lists, the Voyager 2 lan-
guage automatically unloads processes from the memory (image and stack) once it is no more needed.
Because, process and lambda values are first order classes, these values can be manipulated as any
other value. Such expressions can be passed as arguments to functions (extern or not), stored into
lists,... Only inputs and outputs are not allowed: a process or a value cannot be printed to or read from a
device (file/keyboard).
Sometimes, the process loading can fail (not enough memory, .oxo file corrupted, security failure, mis-
typed filename,...). In such events, the loading mechanism returns either a program or a lambda value
void. The user has to explicitely test these values with the usual functions (IsVoid or IsNoVoid) in order
to insure the program correcteness.
Some details were not fully explained in this description. The complete formal definition of each con-
cept is given later in this chapter (section 17.4).

17.3 Libraries
Libraries are just a convenient cosmetic cream on top of the previous concepts. Processes are more
often used as "libraries" than as "real" processes (as known in operating system). But the dynamic
management of such processes is too heavy and unnecessary. For this reason, Voyager 2 provides a spe-
cial syntax to declare libraries.
For instance, a program can contain several functions to manage advanced functionalities (trees, asso-
ciative lists,...). To use all these functions, this library/program should be loadeds each time, lambda
variables should be declared for each used function/procedure and so on. But Voyager 2 allows the
declaration of a library at the beginning of the program. Here is an example:

/*************************/
/* libraries declaration */
/*************************/
use "c:\\lib\\tree.oxo" as mylib;
use mylib.DisplayTree as DisplayTree;
use mylib.ErrorProcess as TreeError;
use mylib.ComputeDepth as Depth;
use "c:\\lib\\assoc.oxo" as associative_list;
use associative_list.SetAssoc as SetAssoc;
/* Global Variables */
integer: a,b,c;
...
begin
 ...
 DisplayTree::(MyTree,File);
 print(Depth::(MyTree));
 ...
end

The use keyword is used in two different ways. The first one gives a logical name to a process/library.
The second one gives a logical name to function/procedure inside a library.
Libraries, contrary to program/lambda declarations, always allow processes to be initialized, no matter
if the body is executed or not. This characteristic is important a library needs another library. For ins-
tance, if the program needs the library "tree.oxo" and if this last one needs the library "record.oxo",
"record.oxo" must be loaded before any function/procedure of "tree.oxo" is called. This is ensured by
the use statements at the beginning of the program. Otherwise, the process should be executed before
any other function can be called from this process.
To ease the programming job, the compiler produces a file with the extension ".ixi" that contains all the
needed use declarations for each function/procedure defined with the export keyword. This file can be
included with the directive explained in chapter 18.

124 Chapter 17 Library and process
17.4 Formal Definitions
17.4.1 The use Function

function program: p use (string: s)

Precondition. s is a string that denotes the name of a Voyager 2 program. The name must follow the
syntax of paths in MS-DOS. This program must have the same security privileges as the calling pro-
gram (see chapter 19).
Postcondition. p denotes a new process that has been loaded in memory with a newly created stack.
The process is just loaded and no execution has been launched.
on error: The value void is returned.

17.4.2 The GetLambda Function

function lambda: f GetLambda (program: p,string: s)

Precondition. p denotes a process and s is a string that denotes the name of a function or a proce-
dure in p.
Postcondition. f is a lambda expression that can be used to call the function or procedure s in p.
on error: The value void is returned.

17.4.3 The ! suffix unary operator
Syntax: P ! (a1,...,an)

P denotes a program expression. If P is not void, then the program or process denoted by P is called
using the a1,...,an values as arguments. Otherwise, nothing happens. If the ! operator is used inside an
expression, the called program must necessarily return a well-typed value as expected according to the
context. If the operator is used as an instruction, the returned value is ignored.

17.4.4 The :: suffix unary Operator
Syntax: F::(a1,...,an)

F is any expression that is evaluated as a lambda value F’. Depending on the nature of F’, the function
or procedure denoted by this value (F’) is called using the expressions a1,...,an as parameters. The num-
ber of arguments must be strictly the same as the number specified in the definition of the function or
the procedure. The compiler cannot check if the number of arguments is correct because it misses infor-
mation to do so. Arguments must have exactly the same types as declared in the definition. If F’ deno-
tes a function, the F::(a1,...,an) expression is evaluated as the result of this function. Otherwise, the
procedure is just called. Once again, the compiler does not have enough information to check that func-
tions are not used as procedures or reciprocally. If F’ denotes the value void, nothing happens and the
execution is aborted with an error message. If the number of arguments is wrong, the stack will be cor-
rupted and the program will stop without any explicit message. The same event occurs if a procedure is
used as a function and reciprocally. Such errors are programming errors that cannot be catched by the
compiler or the abstract machine.

17.4.5 The :: binary Operator
Syntax: P :: N
P is a program expression and N is a string expression. The :: operator is evaluated as a lambda expres-
sion that corresponds to a function or procedure named N and defined in the program P. The stack of P
will be used during the execution of the function or the procedure. Let R be the result, then if
IsVoid(P)=TRUE then R=Void(_lambda). Otherwise if the N string does not match a function or a pro-
cedure in the specified program, then the value void is returned.

17.5 Literate Programming 125
17.5 Literate Programming
Programmers often document their programs with comments. But few environments allow to recover
the program documentation from comments3. Voyager 2 tries to use comments found in programs to
document the ".ixi" files produced by the compiler. In the Voyager 2 syntax, explain clauses can appear
in the head of programs and inside each function or procedure. Explain clauses are used by the compiler
to produce documented ".ixi" files. Figures 17.2 and 17.3 show how the compiler works on an example:

explain (*Factorial Library. Author: Nestor Burma *)

export function integer fact1(integer: a)
explain (*fact1 computes the factorial of its argument in using
a recursive algorithm *)
{ if a=0 then { return 1; }
 else { return a* fact1(a-1); }
}

export function integer fact2(integer: a)
explain (*fact2 computes the factorial of its argument in using
an iterative algorithm *)
 integer: i, result;
{ result:=1;
 for i in [1..a]
 do { result:=result*i; }
 return result;
}

begin
end

Figure 17.2 - Litterate Programming: an example of Voyager 2 program including an explain clause.

3. "Literate Programming" first appeared in the WEB programming language, which is a mix of TeX sentences and Pascal
statements. WEB was defined by D. Knuth.

126 Chapter 17 Library and process
⇓
/* FILE GENERATED ON: 23/IX/1997 at 10:44,24 secs
** Please, does not modify this file.
** Voyager 2 Declarations
** Compiled with Version 3 Release 0 Level 2 */

use "facto.OXO" as facto;

/******************
 * Documentation: *

Factorial Library. Author: Nestor Burma */

use facto.fact1 as fact1;

/* FUNCTION returns integer
 Arguments:
 1) integer: a
 EXPLAIN:
fact1 computes the factorial of its argument in using
a recursive algorithm */

use facto.fact2 as fact2;

/* FUNCTION returns integer
 Arguments:
 1) integer: a
 EXPLAIN:
fact1 computes the factorial of its argument in using
an iterative algorithm */

/* IXI file completed */

Figure 17.3 - Literate Programming: The ".ixi" file is produced from the Voyager 2 program shown in
Figure 17.2. Each "explain clause" is used to document exported functions as well as the library itself.

Chapter 18

The Include Directive

Recurrent needs were observed during the programming phase. For instance, the same constants, func-
tions and procedures are always necessary. For this reason, programmers often have to duplicate sec-
tions of code from one program into another. Such programs become rapidly difficult to maintain.
It is now possible to include files into a program by using a directive statement. Its syntax is:

#include "..." (same as in C language)

Spaces are not allowed between the # character and the include. However, the # may appear anywhere
in a line.
This directive may appear anywhere in the program: in the library section, in the global variables decla-
rations, between statements, or even inside an expression. The semantics of this directive is quite sim-
ple: the compiler replaces the directive with the content of the file specified in argument. The backslash
characters do not need (and cannot) to be escaped. Here follows an example:
Example:

#include "c:\lib\tree.ixi"
...
integer: n;
#include "c:\lib\rtf_cst.h2"
...
function char foo(){
 ...
}

#include "c:\misc\error.h2"

begin
 #include "c:\misc\copyrigh.h2"
 ...
end

The language does not enforce the file extensions. However, it is stringly recommend to use ".ixi" for
libraries declarations and ".h2" for other files. Although any other extension name can be chosen, life
would be easier if everyone respects this convention (as in C).

128 Chapter 18 The Include Directive
It is also recommended to avoid as much as possible1 the use of this directive. Libraries can often be
used in place of this directive and should be prefered for methodological reasons.
If an error occurs in an included file, then the compilation process fails as for any other reason. Howe-
ver, if the compiler fails in opening an included file, this one is simply skipped and the compiler produ-
ces a warning. Very often, this will cause other errors to appear later.

1. The include directive really includes the content of a file and thus, enlarges the .oxo file size. Since the size of .oxo files is
limited, you could exceed this limit.

Chapter 19

Security

Only licensed users of a specific version of DB-MAIN can compile Voyager 2 programs. This license is
materialized by an electronic key which stores the following information:
• A user ID: A unique number associated with each user group. A company having several keys will

have a single user ID shared by all its keys.
• A key ID: A unique number associated with each electronic keys. Two keys have distinct key ID.
• Compile capability: If this flag is set, the user can use the Voyager compiler. Otherwise, the compi-

ler will stop its execution with an explicit error message.
• Distribution capability: If this flag is set, Voyager programs can be developed for users with a dif-

ferent user ID.
The compiler cannot be used without an electronic key having the compile capability flag set.
When the compile capability flag is set, the compiler produces ".oxo" files that can only be used with an
electornic key having the same userID as the key used for compiling.
When the distribution capability flag is set, the user can specify an explicit user ID or an explicit key ID
that restricts the use of the ".oxo" to computers with an electronic key with that user ID or key ID.
These IDs should be specified with the following switches in the commande line of the compiler:
-Kclient: to specify a user ID (cfr. -infokey).
-Kkey: to specify a key ID (cfr. -infokey).
-Kall: the generated ".oxo" file can be run by everybody, with or without electronic key.
-infokey nnn: to specify the ID used by the compiler (cfr. -Kclient,-Kkey). nnn is the number/ID infor-
mation.
Here follow some examples:

comp_V2 foo.v2 -Kclient -infokey 31414
comp_V2 foo.v2 -Kkey -infokey 27182
comp_V2 foo.v2 -Kall

The command line "comp_V2 foo.v2" is the same as the command line "comp_V2 foo.v2 -
Kclient -infokey x " where x is the user ID of the electronic key used to compile.

130 Chapter 19 Security

PART IV

APPENDIX

Appendix A

The Voyager 2 Abstract Syntax

This chapter gives the abstract syntax of the Voyager 2 language. The syntax is defined as a set of rules
written in extended BNF. The following conventions are respected.
• head ← body: a rule.
• "example": literal characters.
• example: a keyword.
• example: a terminal word that represents a class of tokens. (cfr. 2 for more details)
• example: a non terminal word which must be defined by another rule.
• the | operator denotes a disjunction in a body.
• 〈example〉0,∞: example is repeated 0 or more times.

• 〈example〉
α
0,∞ : example is repeated 0 or more times and items are separated by "α".

• 〈example〉1,∞: example is repeated 1 or more times.

• 〈example〉
α
1,∞ : example is repeated 1 or more times and items are separated by "α".

• ∅: the empty word.

A.1 The Syntax
program ← explain-clause 〈use-clause〉0,∞ 〈def-var〉0,∞ 〈def-fct〉0,∞ body

explain-clause ← 〈explain "(*" text "*)"〉0,1

use-clause ← use string as identifier ";" | use identifier "." identifier as identifier ";"

def-var ← type ":" 〈one-var〉
,
1,∞ ";"

one-var ← identifier 〈"=" expr〉0,1

def-fct ← def-function | def-procedure

def-function ← 〈export〉0,1 function type identifier "(" 〈arg〉
,
0,∞ ")" explain-clause 〈def-var〉0,∞

"{" 〈instr〉0,∞ "}"

def-procedure ← 〈export〉0,1 procedure identifier "(" 〈arg〉
,
0,∞ ")" explain-clause 〈def-var〉0,∞

"{" 〈instr〉0,∞ "}"

arg ← type ":" identifier

134
body ← begin 〈instr〉0,∞ end

instr ← ∅
| designer ":=" expr ";"
| goto identifier ";"
| continue ";"
| break ";"
| halt ";"
| label identifier ";"
| return 〈expr〉0,1 ";"

| attach-stmt ";"
| move-stmt ";"
| addcursor ";"
| setval ";"
| dynamic-call ";"
| loop-stmt 〈";"〉0,1

| ifthenelse 〈";"〉0,1

| while-stmt 〈";"〉0,1

| switch-stmt 〈";"〉0,1

| repeat-stmt ";"
| call-procedure ";"

designer ← identifier | identifier "." expr
expr ← expr omega2 expr

| designer ":==" expr
| "-" expr
| not "(" expr ")"
| "(" expr ")"

| "[" 〈expr〉
,
0,∞ "]"

| "[" expr ".." expr "]"
| expr "[" designer "]" "{" constraint "}"
| use "(" expr ")"

| expr "::" "(" 〈expr〉
,
0,∞ ")"

| expr "::" expr

| expr "!" "(" 〈expr〉
,
0,∞ ")"

| designer
| integer
| float
| char
| string
| file
| call-procedure

 135
| create-inst
omega2 ← "-" | "+" | "*" | "<" | ">" | "<=" | ">=" | "=" | "<>" | "++" | "**" | and | or | xor | mod
constraint ← expr | expr ":" expr 〈with expr〉0,1

call-procedure ← identifier "(" 〈expr〉
,
0,∞ ")"

create-inst ← create "(" expr "," 〈simple-field〉
,
0,∞ ")"

simple-field ← expr ":" expr
attach-stmt ← attach identifier to expr
move-stmt ← identifier { "〈" | "〉" } 〈expr〉0,1

addcursor ← expr { "<+" | "+>" } expr
setval ← expr "<--" expr

dynamic-call ← expr "::" "(" 〈expr〉
,
0,∞ ")" | expr "!" "(" 〈expr〉

,
0,∞ ")"

loop-stmt ← for designer in expr do "{" 〈instr〉0,∞ "}"

ifthenelse ← if expr then "{" 〈instr〉0,∞ "}" 〈else "{" 〈instr〉0,∞ "}"〉0,1

while-stmt ← while expr do "{" 〈instr〉0,∞ "}"

switch-stmt ← switch "(" designer ")" "{" 〈case-stmt〉0,∞ default-case "}"

case-stmt ← case expr ":" 〈instr〉0,∞

default-case ← 〈otherwise ":" 〈instr〉0,∞〉0,1

repeat-stmt ← repeat "{" 〈instr〉0,∞ "}" until expr

A.2 Remarks
The #include directive does not appear in the Voyager 2 syntax since it is replaced everywhere by the
content of the specified file.

Appendix B

The VAM Architecture

Although the only visible tool is the compiler, it is worthwhile to know that Voyager 2 is interpreted. In
fact, there are two languages: Voyager 2(V2) and Voyager 1 (V1). The first one is described in this
manual. The second one, V1, is an intermediate language between V2 and the abstract machine: the
VAM1.
Figure B.1 shows how a V2 program is translated into a binary file (prog.oxo) that can be loaded
directly into DB-MAIN in order to be executed.
As a simple example, the following table shows extracts from three files:

prog.v2 prog.v1 prog.oxo

 begin
 print(1+2);
 end

 push-int 1
 push-int 2
 add
 print

 13/1
 13/2
 65
 43

The prog.oxo is just a binary file composed of 6 words (16 bits): 13,1,13,2,65 and 43.
V1 looks like an assembler language and the ".oxo" file is just a binary translation of each instruction of
the ".v1" file with its operands. The ".oxo" file can be loaded fast into the DB-MAIN tool because the
parsing has already been done. In Figure B.1 the compiler is represented by a box that contains two hid-
den processes: the real V2 compiler (named comp_v2) and the V1 compiler (named comp_v1). What
users can see is just the translation of the V2 program into the binary file. Once this compilation is com-
pleted (without error), the program can be loaded into the tool and can be executed.

1. Voyager Abstract Machine.

138
prog.v2

prog.ixi prog.oxo

comp_v2’

prog.v1

comp_v1

DB-MAIN

VAM

Figure B.1 - The Voyager Architecture.

Appendix C

Error Messages when Compiling

The compiler produces three types of error messages during the compilation:
• warning: The error is not important and the compiler is smart enough to continue producing the

right code. Example: a return instruction is followed by an expression in a procedure.
• error: The error prevents the compiler from generating the right code. The compiler skips the error

and continues its job looking for other errors. No code is produced.
• fatal: The error is too important to continue the compilation. No code is produced.
All the errors produced by the compiler are documented hereafter. The compiler always tries to display
the line number of the error. Sometimes this number does not correspond to the right line. It is the case
for compound instructions. This is a known bug1.
1. Buffer too small. (maybe a line with too many characters)

A line of the program is too long for the buffer of the compiler. It should be split into several lines.
2. Parsing error.

There is a syntax error. The compiler should show the content of the line as well as the line number
where the error occurred. The character ’¨’ indicates where the syntax is not verified. Very often, a
’;’ separator is lacking in the previous line.

3. Error while opening a file.
It is impossible to open the specified file (.v2) or to create the output file (.v1). Is it shared by other
applications? Does it exist? Are the path valid?

4. A function with the same name already exists.
A function/procedure is being defined for the second time.

5. The left hand expression of an assignment must be a variable or a field.
The program contains an instruction E := T ; where E is not a variable. Only variables (possibly
with a field) are allowed in the left part of assignments.

6. A procedure is used but not defined.
One instruction is calling a procedure that is not defined. Note that lower and upper case characters
are considered as distinct in Voyager 2.

7. Unknown type.

1. "It is not a bug but a feature." Indeed, the compiler only knows the line number when one instruction is fully parsed. For
this reason, the line number corresponds to the last line of the instruction and not the first one.

140
A bad type is used. Probably a misspelled type like "integger" or "siattribute".
8. The identifier is neither a variable nor a constant.

A variable is expected here and the identifier is not defined as a variable.
9. The procedure is used as a function.

The procedure is used in an expression and not as an instruction.
10.A variable is expected.

A field with a variable used as loop-variable is specified in a request. Only variables are allowed
here. Example: ENTITY_TYPE[e]{...}.

11.The identifier is already defined.
An identifier is defined for the second time. Functions/procedures names, global variables, parame-
ters names and local variables must be all different.

12.Incorrect number of arguments.
A call to a function or a procedure does not use the same number of arguments as required by the
definition of the function or theprocedure.

13.A field with a constant name is not allowed.
You are using a constant name where a variable is expected.

14.The identifier is neither a function nor a built-in.
An undefined function is used. The spelling should be checked.

15.Only a variable can be passed by address.
A value is passed to a built-in procedure or function which expects a variable passed by reference.

16.The local variable is already defined.
There is a conflict between a local variable and either a global variable, a constant name or a func-
tion or procedure name.

17.Local constants not supported.
This feature is not yet implemented although the parser understands it. Note that the feature is not
explained in this reference manual.

18.Return statements must have an expression in functions.
A return instruction is used inside a function with no value. Note that the returned value must have
the same type as the one specified in the head of the function.

19.Return statements cannot have an expression in procedures.
A value is specified after the return instruction inside a procedure. This value is not allowed in
Voyager 2.

20.Return statements in the body of the program cannot have an expression !
A value is specified after the return instruction inside the main body (the part between the begin and
end keywords). This value is not allowed.

21."continue" statement not allowed here.
The continue instruction is only allowed inside while, repeat and for instructions.

22."break" statement not allowed here.
The break instruction is only allowed inside while, repeat and for instructions.

23.The first character of identifiers cannot be ’_’.
The ’_’ character in first position of names is used for reserved keywords.

24.Internal Error.
The compiler has reached a dangerous state. Please warn the DB-MAIN team.

25.Not enough memory.

 141
Not enough memory to allocate dynamic objects. Some applications should be closed or Windows
restarted.

26.Unterminated string.
The string is not closed. A double quote should probably be added at the end.

27.The word is a reserved keyword.
The spelling of the identifier should be changed in order to avoid conflicts.

28.Procedure expected in a call.
A function is used where a procedure is expected.

29.Sub-process cannot be executed.
The compiler cannot run a sub-process. The ".oxo" file has not been produced. Too many applica-
tions are running, not enough memory is available or the process was not found. Its name is
comp_v1.dll.

30.A */ is probably missing
A comment is not terminated or is too long.

31.A *) is probably missing
An explain clause is not terminated or is too long.

32.A literal string is expected here.
The expression must be a string (ie. "...").

33.Fields are not allowed for iterator variables in loops.
Expressions of the form variable.field are not allowed in the loop statements (for-in-do).
Let us note that the semantics of Voyager 2 prevents the compiler to trap some errors. The main
reason is that Voyager 2 is weakly typed and the type verification is sometimes impossible at com-
pile time.The VAM will stop them at execution time.
For instance: the compiler will compile the following program without any error or warning mes-
sage:

file: F;
begin
 F:="Hello"+(5++’i’);
 print(F);
end

34.The identifier does not denote a "program". It should be defined in a use clause.
The program uses an identifier in a "use" clause that has not been declared as a library in a previous
"use" clause.

35.Include directive skipped. File cannot be opened.
The filename specified in an include directive does not denote a file or this file cannot be opened.

Appendix D

Error Messages during Runtime

The VAM (Voyager Abstract Machine) is able to trap most of the problems that can occur during the
execution. Each time it is possible, an error message is displayed indicating the cause of the problem.
Unfortunately, every possible error cannot be trapped. This means that wrong voyager programs may
mislead the VAM, possibly crash DB-MAIN.
Here are the various error messages that can pop-up:
1. Another type is expected.

The type of an operand does not match the expected type of an operation.
2. Internal Error: please stop here.

This error should not appear. Please report it to the DB-MAIN development team with all available
information.

3. You are using an invalid field.
The field used is not valid for this type of object. Example: "print(dto.identifier);" where dto is a
data_object.

4. No enough memory for allocation.
No more memory is available for dynamic data. Some applications can be closed or Windows restar-
ted.

5. A list is expected here.
A non-list value is passed to an operation that expects a list.

6. No program loaded.
This error is obsolete.

7. Impossible to open file.
The ".oxo file" cannot be openend. Is it compiled?

8. Illegal Instruction.
The ".oxo" file is probably corrupted. If it is the case, then it should be recompiled. If this does not
work, then the memory should be corrupted, Windows should be restarted. If this fails again, then
the DB-MAIN development team should be warned.

9. The instruction is not defined so far.
This message should never appear. The DB-MAIN development team should be warned.

10.Cell must be active.

144
An invalid cell is referenced. This message will occur during execution of the following program:

cursor: c; ...; kill(c); print(get(c)); ← error 10.

11.The list cannot be empty.
The expected argument should be a list with at least one active cell.

12.The file is corrupted.
The ".oxo" file is corrupted. The program should be compiled again.

13.Error while reading the file.
The ".oxo" file is corrupted. The program should be compiled again. This may occur when old ver-
sions of ".oxo" files are executed with a more recent version of DB-MAIN.

14.Argument of SetPrintList too large for the buffer.
Arguments of the SetPrintList are stored in static strings and, therefore, their size is limited. Some
characters should be removed.

15.This type cannot be read/written.
Data of some types cannot be printed or read. For instance, values of type list or reference to objects
like data_object cannot be printed.

16.Invalid field in Create operation.
An invalid field is specified in the create instruction.

17.A mandatory field is lacking in Create operation.
All the mandatory fields must be present in a create operation. Chapter 12 lists all the required fields
for every type of object type.

18.Integrity rules are not checked.
A create instruction violates an integrity rule during execution. Chapter 12 gives for more details
about the integrity rules.

19.The buffer of the lexical analyzer is to small.
The lexical analyser tries to parse a text which is too large. MAX_LEX_BUFFER is the size of the
buffer of that lexical analyser. This size should not be exceeded.

20.Several choices are identical in MakeChoice.
Several arguments of the MakeChoice statement are identical. It is probably a mistyping error.

21.A semi-formal field in the text is corrupted.
The syntax of a textual property is invalid.

22.The dynamic property does not exist.
The dynamic property is not referenced as an instance of the specified meta_property object type.

23.Remove is not allowed for this type.
The remove instruction must be used to remove objects of the repository. The type of the value in
parameter is invalid.

24.Impossible to start the AsbtractMachine with this program.
A wrong name or path of a Voyager program has been specified. Other causes can be a damaged file,
or a problem with dynamic ressources (file handle/memory/...).

25.Bad lambda expression.
The lambda expression is invalid. The program problaby tries to use a function that does not exist or
that is mispelled.

26.Bad code in blackbox.
The code passed in parameter to the blackbox is invalid.

Appendix E

Frequently Asked Questions

E.1 Environment Relation Questions
E.1.1 How do I compile a program?
Once you have saved your program in a file (with your favorite text editor), say "prog.v2", you can
compile it by using the Voyager 2 compiler.
The compiler is a 32-bits application that can be executed from the DOS prompt. If the program is cor-
rect, the compiler produces a file called "prog.oxo". This file can then be loaded in the DB-MAIN tool.
Otherwise, the compiler stops, prints an error or warning message, and waits for a key tp be pressed on
the keyboard. The effect of the entered character is:

c: continue compiling and do not stop any more.
s: stop now.
other characters: continue and stop again at next error or warning.

More options are allowed on the command line of the compiler. They are described hereafter:
syntax:

comp_v2 <option>*

where option can be:
filename: any string with no space character and with the first character different from '-', or any
string enclosed in double quotes, can be a filename, according to the syntax of the operating system.
The first filename found in the list is the name of the input file. The second filename is the output
file. If these filenames do not have an extension, the compiler automatically adds the ".v2" extension
to the first one and the ".oxo" extension to the second one. If the output file is not specified then the
name is the same as the input file, but with the ".oxo" extension.
-date: prints the version of the compiler and stops immediately.

If the filename is missing in the list of options, the compiler asks for it during execution.

E.1.2 Question How do I write efficient programs ?
Voyager 2 was not built to be particularly efficient but to write programs rapidly and easily. For this
reason, it is bad idea to try to write a number crunching program in Voyager 2. But there are some reci-
pes to improve program performances:

146
• Lists should be avoided in the print(x) instructions:
 print(x); print(y);
is better than
 print([x,y]);.

• Requests should be expanded rather than browsed using an intermediate list.
For instance, the program at right runs faster than the program at left:

l:={request};
for x in l do {
.
.
.
}

for x in {request} do {
.
.
.
}

• Built-in instructions should be prefered when possible: prefer a for-in-do to a while instruction.
• In the for-in-do instruction, when the list looks like [a..z], the z expression is evaluated at each loop.

If this expression is quite complex, it is better to evaluate it before the loop and use a variable to hold
the result.

E.1.3 I cannot close the console ! Why?
The console is locked until the Voyager 2 program is finished.

E.1.4 When I load program, DB-MAIN tells me that the version of the program is
too old.
Although DB-MAIN is backward compatible with all the versions of the language, the binary format
may change from one version to another. When this message appears, the ".v2" file should be compiled
again with the new compiler.

E.1.5 Why does the compiler find errors in my program although it was working
fine with older versions?
It probably means that some identifiers used as variable/constant/function name are now reserved
keywords in the new version. It is especially true for "dot-expression" (variable.expression). In older
versions of Vayager 2, the compiler was able to distinct a variable declared as integer: sem from a field
used in a dot-expression like sch.sem. Because right-hande-side expression of the "." operator may now
be any expression, the compiler is no more able to distinguish them. Renaming variables should solve
the problem.

E.2 Language Specific Questions
E.2.1 In a predicative query, DB-MAIN tells me that there is an invalid
assignment. Why?
Probably that a sub-type is used where a super-type is expected. For instance, the following query is
invalid:

ENTITY_TYPE[ent]{@SCH_DATA:[sch] with GetType(ent)=ENTITY_TYPE}

Although the list returned by the query is be composed of entity types only, the ent variable used as an
iterator in the generated code to find all the instances of data objects linked to the sch schema should
also be temporarily used to reference rel-types and attributes. So, it is possible that the VAM tries to
assign an attribute to the ent variable that should be defined as entity_type. A correct query is:

DATA_OBJECT[dto]{@SCH_DATA:[sch] with GetType(dto)=ENTITY_TYPE}

 147
E.2.2 Is there a nil value like in Pascal?
No, because there are no pointers in Voyager 2. However, special values denoted by void can be used
for references. To obtain the void value of the entity_type, the function Void(ENTITY_TYPE) can be
used. This function cannot be called for other types like integer or char.

E.2.3 Why is my request looping?
It is prohibited to modify the value of a variable used as the iterator in a query. For instance, the fol-
lowing program is wrong because the variable dto cannot be modified in the body of the for-in-do ins-
truction:

data_object: dto;
schema: sch;
begin
 sch:=GetCurrentSchema();
 for dto in DATA_OBJECT[dto]{@SCH_DATA:[sch]} do {
 dto:=Void(DATA_OBJECT);
 }
end

E.2.4 How can I empty a list L?
L:=[1,2]; L:=[];

The last instruction empties the list L.

E.2.5 How can I test if a list is empty ?
There are at least two ways to proceed. The first one is to check the equality of the candidate list with
the empty list:

if mylist=[] then ...

The second solution is to test the length of the list:
if Length(mylist)=0 then ...

Appendix F

Regular Expressions

A regular expression is a pattern description using a "meta" language. The characters that form regular
expressions are:
. Matches any single character.
* Matches 0 or more occurrences of the preceding expression.
+ Matches 1 or more occurrences of the preceding expression.
[...] Matches any character within the brackets.
? Matches 0 or 1 occurrence of the previous expression.
"..." Matches exactly the text enclosed between quotes.
x..y Is a notation for a range of characters, e.g., [0..4] means [0,1,2,3,4].
\ t,\ n,\x Denotes respectively the tabulation, the newline and the x character when this last one is

already used by the regular expression language ([].*+...).
For instance [a..zA.. Z][a..zA.. Z0..9]* denotes the syntax of identifiers in Pascal and [0..9]+[.[0..9]+]?
denotes the syntax of real numbers (12,012,19.021,...).

BIBLIOGRAPHY

[1] A. Aho, R. Sethi, and J. Ullman. Compilateurs. Principes, techniques et outils. InterEditions,
1989.

[2] A. Church. The calculi of lambda conversion. Princeton University Press, 1941.
[3] V. Englebert, J. Henrard, J.-M. Hick, and D. Roland. Description du méta-schéma de l’atelier

logiciel DB-MAIN version 1.0. Technical report, FUNDP, 1995.
[4] A. J. Field and P. G. Harrison. Functional Programming. International computer science series.

Addison-Wesley, 1989.
[5] K. Jensen and N. Wirth. Pascal. Manuel de l’utilisateur. Eyrolles, 1978.
[6] D. E. Knuth. The TeXbook. Addison-Wesley, 1990.
[7] D. Roland. MDL: Programmer’s guide. Technical report, FUNDP, 2000.
[8] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.
[9] R. Wilhelm and D. Maurer. Les compilateurs: théorie, construction, génération. Masson, 1994.

INDEX

Symbols
! 124
- 17
* 17, 18
** 17, 24
+ 18
++ 18, 24
+> 24
, 18
/ 17
:: 124
:== 18
< 18
<+ 24
<= 18
<> 18
= 18
> 18
>= 18
_A 40
_char 7
_file 7
_float 7
_GetFirst 109
_GetNext 109
_integer 7
_lambda 7
_list 7
_program 7
_R 39
_string 7
_W 39
A
abstract syntax 133
actor 71
actor generalization 72
AddFirst 38

addition 18
AddLast 39
aggregation 91
AGGREGATION_ROLE 91
AL1_GR 87
and 18
architecture 119

VAM 137
ARRAY_CONTAINER 84
AscToChar 36
ASS_GROUP 87
assignment 27
association 72
atleastone 87
attach 22
attribute 83
B
BAG_CONTAINER 84
BBF_ATMUL_TO_LIST 51
BBF_ATT_TO_ET_INST 52
BBF_ATT_TO_ET_VAL 52
BBF_DIR 51
BBF_ET_TO_ATT 51
BBF_FIND_PU_BY_NAME 52
BBF_GET_DECLARED_VAR 51
BBF_IMPORT_ISL 51
BBF_IS_VALID_EXISTENCE_GR 51
BBF_IS_VALID_GR_COMPONENT 51
BBF_IS_VALID_IDENTIFIER_GR 51
BBF_ISA_TO_RT 52
BBF_RT_TO_ATT 51
BBF_SCHEMACOPY 50
BBP_ADD_POINT_LOG 48
BBP_CENTER_SELECTED 50
BBP_CLOSE_WIN 49
BBP_COPY 49
BBP_COPY_VIEW 50
BBP_CREATE_VIEW 50
BBP_DBL_CLICK 49
BBP_DELETE_VIEW 50

154
BBP_DISPLAY_REF_VAR 49
BBP_GENERATE_VIEW 50
BBP_INTEGRATE_SCHEMA 49
BBP_MARK_SELECTED 49
BBP_NEW_LOG 48
BBP_OPEN_WIN 49
BBP_PASTE 49
BBP_REFRESH_WIN 50
BBP_RENAME_VIEW 50
BBP_REPLAY_AUTO 49
BBP_SAVE_PS_CONSOLE 49
BBP_SELECT_MARKED 50
BBP_TRACE 48
BlackBoxF 50, 51, 52
BlackBoxP 48, 49, 50
BOOL_ATT 84
break 32
BrowsePrint 42
BrowseRead 43
C
call 46
CallSync 47
CAN_PLAY 99
case 29
char 13
CHAR_ATT 84
character 13

operation 35
CharIsAlpha 35
CharIsAlphaNum 35
CharIsDigit 35
CharToAsc 36
CharToLower 36
CharToStr 35
CharToUpper 35
Choice 44
ClearScreen 47
CloseFile 40
clu_sub 90
CLUSTER 90
cluster 90
CO_ATTRIBUTE 86
co_attribute 85
COEX_GR 87
coexistence 87
coll_colet 89
COLL_ET 90
coll_et 89
COLLECTION 89
collection 89

color 77
comment 5
COMP_GROUP 87
compiling

error message 139
COMPONENT 86
component 86
COMPOSITION_ROLE 91
CON_COPY 82
CON_DIC 82
CON_GEN 82
CON_INTEG 82
CON_XTR 82
CONNECTION 82
connection 82
cons_cpu 96
CONS_CRES 97
cons_cres 96, 97
CONS_CROLE 97
cons_crole 96, 97
CONS_PU 96
cons_pu 96
CONS_RES 97
cons_res 97
CONS_ROLE 97
cons_role 97
const_mem 88, 89
constant 6, 94
CONSTRAINT 89
constraint 88
CONSUMPTION 96
container 83
contains 80
content 77
continue 33
Control flow 71
cp_res 98, 99
cp_rol 99
create 76
creation_date 78, 79
criterion 90
CST_GR 87
cursor 15, 22

+> 24
<+ 24
attach 22
get 25
kill 22
operation 38

 155
D
data_colet 89
data_gr 82, 87
data_object 82
DATE_ATT 84
decim 84
decision 70
default 30
delete 41
description 81, 93, 94, 103
DialogBox 42
difference 18
different 18
disjoint 90
distinct 90
division 17
DOCUMENT 81
document 81
document_type 104
domain 82, 84
E
ELEMENT 93
element 93
else 29
ent_rel_type 82
entity_clu 83, 90
entity_etr 83, 92
entity_sub 83, 90
ENTITY_TYPE 83
entity_type 83
ENVIRONMENT 95
eof 41
EQ_CONSTRAINT 88
equal 18
ERA_SCHEMA 79
error message

compiling 139
execution 143

ET_ROLE 92
et_role 92
ETROUND 80
ETSHADOW 80
ETSQUARE 79
EXCL_GR 87
exclusive 87
execution

error message 143
ExistFile 41
explain 125
expression 17

arithmetic 18
list 21
reference 18
regular 149

extend 71
F
FALSE 8
faq 145
file 16

_A 40
_R 39
_W 39
operation 39

final state 70
flag 76

operation 45
FLOAT_ATT 84
Floats 13
font_name 103
font_size 103
for 31
funct 87
function 53
functional assignment 18, 19
G
GEN_CONSTRAINT 88
generalization 71
generic_object 76
get 25
GetAllProperties 115
GetChar 59
GetColor 46
GetCurrentObject 47
GetCurrentSchema 47
GetDay 44
GetError 47
GetFirst 39
GetFlag 45
GetHour 44
GetLambda 124
GetLast 39
GetMin 45
GetMonth 45
GetOID 46
GetOxoPath 47
GetPosX 46
GetPosY 46
GetProperty 114
GetSec 45
GetTokenUntil 58

156
GetTokenWhile 57
GetType 47
GetWeekDay 45
GetYear 45
GetYearDay 45
go_nnn 76
go_note 78
go_st 76, 95
go_uo 76, 77
goto 32
gr_comp 86
gr_mem 87, 89
greater than 18
greater than or equal 18
GROUP 88
group 87
H
halt 33
hidden 101
HIDEPROD 80
I
ID_GR 87
identifier 5
if 29
INC_CONSTRAINT 88
include 71, 127
INCLUSION_CONSTRAINT 88
INDEX_ATT 84
-infokey 129
Initial state 70
integer 13
interface

operation 42
interrupt 33
INV_CONSTRAINT 88
invoke_pu 92
invokes_pu 93
is_in 80
IsNoVoid 47
IsVoid 47
K
-Kall 129
-Kclient 129
key 87
KEY_GR 87
kill 22
-Kkey 129
L
label 32
last_update 79

Length 39
length 84
less than 18
less than or equal 18
lexical analyzer 57
lexical element 5
library 119, 123
lineto 81
list 15, 21

** 24
++ 24
concatenation 18, 24
insertion 24
intersection 17, 24
operation 24, 38

LIST_CONTAINER 84
literate programming 125
logical and 18
logical not 17
logical or 18
logical xor 18
M
MakeChoice 59
MakeChoiceLU 59
mark_plan 103
MARK1 76
MARK2 76
MARK3 76
MARK4 76
MARK5 76
max_card 96, 97
max_con 91
max_mul 103
max_rep 83, 87
MAX_STRING 14
mem_role 89
member 39
MEMBER_CST 89
member_cst 89
MessageBox 43
META_OBJECT 100
meta_object 100
META_PROPERTY 101
meta_property 101
min_card 96, 97
min_con 91
min_mul 103
min_rep 83, 87
mo_mp 100, 101
mod 17

 157
mode 92, 93, 95
modulo 17
multi 101
multiplicative 17
N
N_CARD 84, 87, 91
name 78, 79, 82, 87, 89, 90, 91, 93, 95, 96,
97, 98, 100, 101, 103
neof 41
nn_note 78
not 17
NOTE 78
note 77, 78
note_nnn 77
nseof 59
NUM_ATT 84
number 81
O
object 75
Object flow 71
object removal 111
OBJECT_ATT 84
object_view 102, 103
OpenFile 39
operation 35

character 35
cursor 38
file 39
flag 45
general 46
interface 42
list 38
string 36
time 44

operator 5, 17, 94
associativity 17
binary 124
precedence 17
suffix unary 124

or 18
OR_MEM_CST 88, 89
otherwise 29
owner_att 83, 86
owner_of_att 86
owner_of_proc_unit 100
owner_pu 92
P
p_act_arg 76, 94
p_decl 92, 95
P_EXPRESSION 94

p_expression 94
p_fct_call 92, 94
p_made_of 93
p_parameter 94
p_part_of 93
p_sub_expression_of 94
path 81
pfrom 79, 82
posx 77
posx_project 79
posy 77
posy_project 79
predefined 101
primary 87
printf 40
PROC_UNIT 92
proc_unit 92
procedure 53
process 119, 120
procunit_cpu 92, 96, 99
product 79
product_type 103
propertie 113

dynamic 115
textual 113

pto 79, 82
pu_made_of 92, 93
Q
querie 105, 109

global scope 106
iterative 109
predicative 105
restricted scope 106

R
re_gen 98
RE_ISA 98
re_spec 98
read 41
readf 40, 41
real_comp 86, 92
real_component 92
recursiveness 54
recyclable 84
reduce 103
reference 16
regular expression 149
REL_ELEMENT 93
REL_TYPE 83
rel_type 83
remove 111

158
rename 41
repeat 31
repository 63
RES_ROLE 99
reserved words 6
RESOURCE 98
RESOURCE_CRES 97
resource_cres 97, 98
RESROLE_CROLE 97
resrole_crole 97, 99
return 53
ro 99
ro_etr 91, 92
ro_gen 99
RO_ISA 99
ro_spec 99
ROLE 91
role 91
rt_ro 83, 91
RTROUND 79
RTSHADOW 79
RTSQUARE 79
S
sch_coll 79, 89
sch_data 79, 82
SCHEMA 80
Schema 70, 71
schema 79
schema_type 104
SEC_GR 87
secondary 87
security 129
SELECT 77
sem 78, 79, 82, 87, 89, 91, 93, 95, 96, 97, 98,
100, 101
seof 59
separator 18
SEQ_ATT 84
SET_CONTAINER 84
SET_OF_PRODUCT 80
set_of_product 80
SET_PRODUCT_ITEM 81
set_product_item 80
SetFlag 45
SetParser 57
SetPrintList 41
SetProperty 114
short_name 78, 79, 82, 89
SI_ATTRIBUTE 85
si_attribute 84

signal receipt 70
signal sending 70
SkipUntil 58
SkipWhile 58
st_env 95
stable 84
STATE 95
state 70
statement 27

break 32
continue 33
for 31
goto 32
halt 33
if-then 29
if-then-else 29
iteration 30
label 32
repeat 31
selection 29
switch 29
while 30

StrBuild 36
StrCmp 38
StrCmpLU 38
StrConcat 36
StrFindChar 37
StrFindSubStr 37
StrGetChar 37
StrGetSubStr 37
string 14

operation 36
StrIsInteger 38
StrItos 37
StrLength 37
StrSetChar 37
StrStoi 37
StrToLower 38
StrToUpper 38
sub_element 93
SUB_TYPE 91
sub_type 90
switch 29
synchronisation 70
syntax

Voyager 2 133
sys_mo 100
sys_sch 78
SYSTEM 78
system 78

 159
system_sch 79
T
TAR_MEM_CST 88, 89
tech 78, 79, 82, 87, 89, 91, 93, 95, 96, 97, 98
text_font_name 103
text_font_size 103
text_line 81
TheFirst 109
then 29
TheNext 109
time

operation 44
title 103
total 90
Transfo 48
TRUE 8
type 13, 79, 82, 84, 87, 88, 92, 93, 95, 98,
100, 101, 103
type_of_file 81
U
UMLACTIVITY_DIAGRAM 79
UMLCLASS_DIAGRAM 79
UMLUSECASE_DIAGRAM 79
unary minus 17
UngetToken 58
UNIQUE_ARRAY_CONTAINER 84
UNIQUE_LIST_CONTAINER 84
until 31
updatable 101
UpdateColor 46
UpdatePosX 46
UpdatePosY 46
use 124
use case 71
USER_ATT 84
user_const 87
user_object 77
user_view 103
user_viewable 102
uv_nnn 102
uv_uo 77, 103
V
value 90
VAM 137
VARCHAR_ATT 84
version 79
Void 47
W
while 30

X
xgrid 103
xor 18
Y
ygrid 103
Z
zoom 103

	Preface
	Forewords
	Foreword to Version 2 Release 1
	Foreword to Version 3 Release 0
	Foreword to Version 4 Release 0
	Foreword to Version 5 Release 0
	Foreword to Version 6 Release 0
	Foreword to Version 6 Release 5
	Foreword to Version 7 Release 0
	Foreword to Version 8 Release 0

	Contents
	List of Figures
	List of Tables
	Part I The Voyager 2 Language
	Chapter 1 Preliminaries
	Chapter 2 Lexical Elements
	2.1 Comments
	2.2 Operators
	2.3 Identifiers
	2.4 Reserved words
	2.5 Constants

	Chapter 3 Global Definitions
	Chapter 4 Types
	4.1 Integers
	4.2 Floats
	4.3 Characters
	4.4 Strings
	4.5 Lists
	4.6 Cursor
	4.7 Files
	4.8 References

	Chapter 5 Expressions
	5.1 Precedence and associativity of operators
	5.2 Arithmetic Expressions
	5.3 Reference Expression
	5.4 Functional Assignment

	Chapter 6 List Expressions
	6.1 Overview
	6.2 Operations
	6.2.1 Concatenation
	6.2.2 Intersection
	6.2.3 Insertion
	6.2.4 Miscellaneous

	Chapter 7 Statements
	7.1 General rules
	7.2 Assignment
	7.3 Selection Statements
	7.3.1 The if-then Statement
	7.3.2 The if-then-else Statement
	7.3.3 The switch Statement

	7.4 Iteration Statements
	7.4.1 The while Statement
	7.4.2 The repeat Statement
	7.4.3 The for Statement
	7.4.4 The goto Statement
	7.4.5 The label Statement
	7.4.6 The break Statement
	7.4.7 The continue Statement
	7.4.8 The halt Statement
	7.4.9 The interrupt statement

	Chapter 8 Operations
	8.1 Operations on Characters
	8.2 Operations on Strings
	8.3 Operations on Lists and Cursors
	8.4 Operations on Files
	8.5 Interface Operations
	8.6 Time Operations
	8.7 Flag Operations
	8.8 General Operations
	8.9 Blackox
	8.9.1 BlackBoxP
	8.9.2 BlackBoxF

	Chapter 9 Functions and Procedures
	9.1 Definition
	9.2 Recursiveness

	Chapter 10 Lexical Analyzer

	Part II The Repository
	Chapter 11 Repository Definition
	11.1 Project
	11.2 ERA schema
	11.2.1 Schema
	11.2.2 Entity type
	11.2.3 Rel-type
	11.2.4 Attribute
	11.2.5 Processing unit
	11.2.6 Role
	11.2.7 Generalization/specialization
	11.2.8 Group and constraint
	11.2.9 Collection

	11.3 UML class diagram
	11.4 UML activity diagram
	11.4.1 Schema
	11.4.2 Action state
	11.4.3 Initial state, final state, synchronisation, decision, signal sending and receipt
	11.4.4 Object state
	11.4.5 Control flow
	11.4.6 Object flow

	11.5 UML use case diagram
	11.5.1 Schema
	11.5.2 Use case
	11.5.3 Actor
	11.5.4 Extend, Include and use case generalization relations
	11.5.5 Actor generalization
	11.5.6 Association

	11.6 Textual document
	11.7 Set of products and connection
	11.8 Note
	11.9 Meta object and meta property

	Chapter 12 Objects Definition
	12.1 generic_object
	12.2 user_object
	12.3 note
	12.4 nn_note
	12.5 system
	12.6 product
	12.7 schema
	12.8 set_of_product
	12.9 set_product_item
	12.10 document
	12.11 text_line
	12.12 connection
	12.13 data_object
	12.14 ent_rel_type
	12.15 entity_type
	12.16 rel_type
	12.17 attribute
	12.18 si_attribute
	12.19 co_attribute
	12.20 owner_of_att
	12.21 component
	12.22 group
	12.23 constraint
	12.24 member_cst
	12.25 collection
	12.26 coll_et
	12.27 cluster
	12.28 sub_type
	12.29 role
	12.30 et_role
	12.31 real_component
	12.32 proc_unit
	12.33 element
	12.34 rel_element
	12.35 p_expression
	12.36 environment
	12.37 state
	12.38 consumption
	12.39 cons_pu
	12.40 cons_res
	12.41 cons_role
	12.42 resource
	12.43 re_isa
	12.44 res_role
	12.45 ro_isa
	12.46 can_play
	12.47 owner_of_proc_unit
	12.48 meta_object
	12.49 meta_property
	12.50 user_viewable
	12.51 user_view
	12.52 product_type
	12.53 schema_type
	12.54 document_type

	Chapter 13 Predicative Queries
	13.1 Introduction
	13.2 Specifications
	13.2.1 Global Scope Queries
	13.2.2 Restricted Scope Queries

	Chapter 14 Iterative Queries
	Chapter 15 Object Removal
	Chapter 16 Properties
	16.1 Textual Properties
	16.2 Dynamic Properties
	16.2.1 Introduction
	16.2.2 Explanation

	Part III Modular Programming
	Chapter 17 Library and process
	17.1 The New Architecture
	17.2 Voyager 2 Process
	17.3 Libraries
	17.4 Formal Definitions
	17.4.1 The use Function
	17.4.2 The GetLambda Function
	17.4.3 The ! suffix unary operator
	17.4.4 The :: suffix unary Operator
	17.4.5 The :: binary Operator

	17.5 Literate Programming

	Chapter 18 The Include Directive
	Chapter 19 Security

	Part IV Appendix
	Appendix A The Voyager 2 Abstract Syntax
	A.1 The Syntax
	A.2 Remarks

	Appendix B The VAM Architecture
	Appendix C Error Messages when Compiling
	Appendix D Error Messages during Runtime
	Appendix E Frequently Asked Questions
	E.1 Environment Relation Questions
	E.1.1 How do I compile a program?
	E.1.2 Question How do I write efficient programs ?
	E.1.3 I cannot close the console ! Why?
	E.1.4 When I load program, DB-MAIN tells me that the version of the program is too old.
	E.1.5 Why does the compiler find errors in my program although it was working fine with older versions?

	E.2 Language Specific Questions
	E.2.1 In a predicative query, DB-MAIN tells me that there is an invalid assignment. Why?
	E.2.2 Is there a nil value like in Pascal?
	E.2.3 Why is my request looping?
	E.2.4 How can I empty a list L?
	E.2.5 How can I test if a list is empty ?

	Appendix F Regular Expressions

	Bibliography
	Index

