
DB-Main Manual Series
JAVA INTERFACE FOR DB-MAIN

REFERENCE MANUAL

VERSION 11 - SEPTEMBER 2018
REVER s.a.

 i
CONTENTS

CONTENTS ..I

LIST OF FIGURES ... III

LIST OF TABLES.. V

CHAPTER 1
WARNINGS..1

CHAPTER 2
INTRODUCTION...3

2.1 JIDBM ... 3
2.2 Architecture ... 3
2.3 JIDBM principles .. 3

2.3.1 Getting started ... 3
2.3.1.1 Windows... 4
2.3.1.2 Linux .. 4
2.3.1.3 Mac... 4

2.3.2 Classpath ... 4
2.3.3 Jar library... 4
2.3.4 Plug-in entry point... 5
2.3.5 Debugging ... 5
2.3.6 A simple example.. 5

2.3.6.1 Loading a project.. 6
2.3.6.2 Creating a DBMProject ... 6
2.3.6.3 Multiple project management... 6
2.3.6.4 Retrieving schemas from the current project ... 6

CHAPTER 3
CLASS SPECIFICATIONS ..9

3.1 JIDBM repository architecture .. 9
3.1.1 Naming conventions.. 9

3.1.1.1 Class naming .. 10
3.1.1.2 Field naming... 10
3.1.1.3 Method naming .. 10

3.1.2 The project view.. 12
3.1.2.1 DBMProject ... 12
3.1.2.2 DBMMetaObject and DBMMetaProperty ... 12
3.1.2.3 DBMProduct and DBMConnection ... 14
3.1.2.4 DBMText and DBMTextLine .. 15
3.1.2.5 DBMSchema .. 15
3.1.2.6 DBMProductSet ... 16

3.1.3 The data view .. 16
3.1.3.1 DBMSchema .. 16
3.1.3.2 DBMCollection .. 16
3.1.3.3 DBMDataObject... 17
3.1.3.4 DBMEntityRelationshipType... 17
3.1.3.5 DBMEntityType, DBMCluster and DBMSubType ... 17
3.1.3.6 DBMRelationshipType and DBMRole .. 17
3.1.3.7 DBMAttribute .. 18
3.1.3.8 DBMSimpleAttribute ... 18
3.1.3.9 DBMCompoundAttribute... 19
3.1.3.10 DBMProcessingUnit .. 19
3.1.3.11 DBMGroup, DBMConstraint and DBMConstraintMember.. 19

ii Contents
3.1.3.12 DBMAttributeOwner..20
3.1.3.13 DBMProcessingUnitOwner..20

3.1.4 The process view ...21
3.1.4.1 DBMSchema ..21
3.1.4.2 DBMDataObject ...21
3.1.4.3 DBMProcessingUnit...22
3.1.4.4 DBMState ...22
3.1.4.5 DBMElement and DBMElementRelation ..22
3.1.4.6 DBMEnvironment ..23
3.1.4.7 DBMResource and DBMResourceSubType ..23
3.1.4.8 DBMConsumption, DBMProcessingUnitCardinality and DBMResourceCardinality 24

3.1.5 The concrete view..24
3.1.5.1 DBMGenericObject..24
3.1.5.2 DBMConcreteObject ..27
3.1.5.3 DBMUserView and DBMUserObject ..27
3.1.5.4 DBMNote and DBMNoteRelation ...28

3.1.6 The inheritance view..28
3.2 Special classes..28

3.2.1 DBMLibrary ..28
3.2.2 DBMConsole ...29
3.2.3 DBMClassLoader ..29
3.2.4 DBMVersion ..29

CHAPTER 4
PROGRAMMING STYLES ... 31

CHAPTER 5
EXAMPLES ... 33

5.1 Statistic generator...33
5.1.1 Description...33
5.1.2 Java code..33

5.2 Schema creator...34
5.2.1 Description...34
5.2.2 Java code..34

 iii
LIST OF FIGURES

Figure 3.1 - The project view of the DB-Main repository for JIDBM. ... 12
Figure 3.2 - The data view of the DB-Main repository for JIDBM... 16
Figure 3.3 - The process view of the DB-MAIN repository for JIDBM. .. 21
Figure 3.4 - The concrete view of the DB-MAIN repository for JIDBM.. 24
Figure 3.5 - The inheritance view of the DB-MAIN repository for JIDBM. .. 28

 v
LIST OF TABLES

Table 3.1 - The predefined meta-objects in DB-MAIN repository.. 13
Table 3.2 - Constants of the fields type and function in the DBMMetaProperty class. 13
Table 3.3 - Constants of the field type in the DBMConnection class.. 15
Table 3.4 - Constants of the field typeFile in the DBMText class... 15
Table 3.5 - Constants of the field type in the DBMSchema class. .. 15
Table 3.6 - Constants of the field setType in the DBMAttribute class. ... 18
Table 3.7 - Constants of the field type in the DBMSimpleAttribute class. ... 18
Table 3.8 - Constants of the field type in the DBMProcessingUnit class.. 19
Table 3.9 - Constants of the field type in the DBMGroup class. ... 19
Table 3.10 - Constants of the field type in the DBMConstraint class. .. 20
Table 3.11 - Constants of the field memberRole in the DBMConstraintMember class. 20
Table 3.12 - Constants of the field mode in the DBMProcessingUnit class.. 22
Table 3.13 - Constants of the field type in the DBMElement class... 23
Table 3.14 - Constants of the fields type and mode in the DBMEnvironment class. .. 23
Table 3.15 - Constants of the field objectType in the DBMGenericObject class. ... 25
Table 3.16 - Constants of the field flag in the DBMGenericObject class. .. 25
Table 3.17 - Constants of the field type in the DBMUserView class. ... 27

Chapter 1

Warnings

In this manual, we suppose that JAVA and DB-MAIN concepts are known. The reader not familiar with
these concepts is advised to read the following books:

• Horstmann, C. S., Cornell, G., Core Java 2, Volume-I – Fundamentals (seventh edition), Sun
Microsystems Press, 2004.

• DB-MAIN 10: the modelling tool for your information system – Reference Manual, DB-MAIN
technical documentation, 2016.

• DB-MAIN 10: HTML Help, DB-MAIN technical documentation (F1 in the DB-MAIN CASE
tool), 2016.

Readers interested by more detailed information about the description of the jidbm package can also
refer to:

• jidbmdoc: Javadoc of the jidbm package, DB-MAIN technical documentation, 2016.

2 Chapter 1 Warnings

Chapter 2

Introduction

2.1 JIDBM
JIDBM (Java Interface for DB-Main) is a Java API for accessing to the DB-MAIN repository in read
and write mode. It consists of a set of classes written in Java programming language. JIDBM provides a
Java API for DB-MAIN users and makes possible the writing of applications using a pure Java API.

2.2 Architecture
JIDBM operates with two libraries dbm_core.dll and jidbm.jar:

• dbm_core.dll: it allows JIDBM that runs within the JAVA Virtual Machine to operate with the
DB-MAIN repository.

• jidbm.jar: the com.dbmain.jidbm package containing classes that allow programmers to access
to the DB-MAIN repository.

jidbm.jar

JIDBM interface

Java Application

dbm_core.dll DB-MAIN

2.3 JIDBM principles
2.3.1 Getting started
The first thing you do is check that you are set up properly. This involves the following steps:

4 Chapter 2 Introduction
2.3.1.1 Windows
Java Virtual Machine:

− If you have the full DB-MAIN installation, DB-MAIN uses the Java Virtual Machine (jvm.dll) in
the directory \java\jre\bin\client of the DB-MAIN setup directory.

− If Java is not present in the DB-MAIN setup directory, you must have Java 1.4 (or later) on your
machine. To install Java, simply follow the instructions for downloading the JDK 1.4 (or later).
The path to the jvm.dll file (for example: C:\Program Files\J2sdk1.4.1_03\Jre\Bin\Client) must
be added to the path environment variable.

• JIDBM interface: The JIDBM classes are included in the jidbm.jar file. This file must be also in the
DB-MAIN binary directory (with the db_main.exe file). This jar file is provided with DB-MAIN
setup file. To develop java plug-ins, it must be interesting to include the jidbm.jar file in your class-
path variable.

IMPORTANT: If, after following installation instructions above (even with full DB-MAIN setup), java
plug-ins do not work, add also the bin path of the JRE (for example "C:\Program Files\java\jre\bin") to
path environment variable.

2.3.1.2 Linux
• Java Virtual Machine: DB-MAIN uses the Java Virtual Machine (libjvm.so) in the directory /java/

jre/lib/i386/client of the DB-MAIN setup directory.
• JIDBM interface: The JIDBM classes are included in the jidbm.jar file. This file must be also in the

DB-MAIN binary directory (with the db_main file). This jar file is provided with DB-MAIN setup
file. To develop java plug-ins, it must be interesting to include the jidbm.jar file in your classpath
variable by using something like this in the .bashrc file:
export CLASSPATH=.:$DB_MAIN_BIN/jidbm.jar:$CLASSPATH

2.3.1.3 Mac
• Java Virtual Machine: if Java Virtual Machine is already installed, there is nothing to do. If not, two

solutions are available:
− The system will offer to download and install Java from the Apple site at the first launch of DB-

MAIN.
− Perform a manual installation. See http://support.apple.com/kb/DL1573 for Mac OS X 10.6.8 or

http://support.apple.com/kb/DL1572 for Mac OS X 10.7.x and later.
• JIDBM interface: The JIDBM classes are included in the jidbm.jar file. This file must be also in the

DB-MAIN Contents/Frameworks directory. This jar file is provided with DB-MAIN disk image.

2.3.2 Classpath
By default, each java plug-in developed with the JIDBM interface uses the system variable classpath
defined on the current machine.
However it is possible to define a local classpath in a file named .jidbmclasspath in the plug-in direc-
tory. The syntax of this file is the same as the classical classpath (file or directory localization separated
by semicolon). In this case, only the local classpath is taken into account to find the libraries used by the
java plug-in.
If a Jar library contains the plug-in, it also possible to put necessary Java libraries in the lib directory of
Jar file. In this case, either the existing local .jidbmclasspath variable or the system classpath variable
are take into account.
IMPORTANT: Use only absolute paths in .jidbmclasspath file and write a single line without carriage
return at the end.

2.3.3 Jar library
DB-MAIN can execute class files but also executable Jar libraries. Jar libraries are very interesting
because one file contains all that is needed to run a Java plug-in in DB-MAIN.

2.3 JIDBM principles 5
Jar libraries must have a specific tree structure to be executed in DB-MAIN:
− A META-INF directory containing a MANIFEST.MF file. This is a MANIFEST.MF file sample:

Manifest-Version: 1.0
Class-Path: lib/library.jar
Created-By: 1.0 (Rever S.A.)
Main-Class: eu.rever.statistics.StatisticGenerator

The main entries are Main-Class and Class-Path. The mandatoty Main-Class entry give the
name of class file to be executed by DB-MAIN. Here, the class file is StatisticGenerator.class
and it is in eu/rever/statistics directory inside de Jar library. The optional Class-Path entry give
the libraries (separated by semi-column) used by the main class file. Here, library.jar file is in lib
directory insides the Jar library. For more information about other manifest entries, see Manifest
file help on internet.

− A lib directory containing the Java libraries used by the java plug-in.
− The plug-in class files (possibly in a directory).

In plugins directory of DB-MAIN setup directory, there are two examples of Jar library plug-ins: statis-
tics.jar and sql.jar.

2.3.4 Plug-in entry point
Java DB-MAIN plug-ins (class files or main class in Jar library) must have a public static method called
runDBM (without parameters) as entry point:

public static void runDBM() {
 ...
}

Without this method, plug-in cannot be run in DB-MAIN.

2.3.5 Debugging
Remote debugging can be useful for java plug-in development. To achieve that, you must start DB-
MAIN in command line mode with two parameters:

db_main -pXXX -s[yn]

where p is the transport address for the connection and s the suspending mode. A development platform
(like Eclipse) can listen for a connection at port XXX and debug a java plug-in launched in DB-MAIN.
if suspending mode is y, the target VM will be suspended until the debugger application connects. Othe-
rwise, the debugger stops at the first breakpoint.

2.3.6 A simple example
This chapter goes through a simple example of using JIDBM to access to the DB-MAIN repository.
There are two ways to access to the repository:
− Open or create a project in DB-MAIN and run the java program from DB-MAIN.
− Run the java program that loads a project in the repository. In this case, the following files are nec-

cessary:
• dbm_core.dll and jidbm.jar for Windows;
• libdbm_core.so and jidbm.jar for Linux;
• libdbmfunc.dylib, libreposit.dylib, libjidbm.dylib and jidbm.jar for Mac.

2.3.6.1 Loading a project
If the java program is launched from DB-MAIN, the first thing you need to do is load (or create) a pro-
ject you want to use in the DB-MAIN CASE tool.
If the java program is executed independently of DB-MAIN, it must load the project you want to use.
Do not forget to delete the current project before the program end in order to free memory and delete all
temporary files created during the loading. For example:

DBMLibrary lib = new DBMLibrary();
DBMProject pro = lib.loadDBMProject(c:\\temp\\test.lun);
if (pro != null) {
 ...
 pro.deleteProject();
}

2.3.6.2 Creating a DBMProject
Once the project is loaded, an instance of the object DBMProject can be created in the Java program.

DBMProject pro = new DBMProject();

2.3.6.3 Multiple project management
If the java program is executed independently of DB-MAIN, it must be possible to load several projects
in the DB-MAIN repository. For example:

DBMLibrary lib = new DBMLibrary();
DBMProject pro1 = lib.loadDBMProject(c:\\temp\\test.lun);
DBMProject pro2 = lib.loadDBMProject(c:\\temp\\test1.lun);
DBMProject curpro = lib.getCurrentProject();

Each object of the DB-MAIN repository is identified by its object identifier (local identifier of a project
obtained by method getObjectIdentifier of class DBMGenericObject) and its project identifier (obtai-
ned by method getProjectIdentifier of class DBMGenericObject).
The method getCurrentProject of class DBMLibrary returns the last project accessed by any class
method in the DB-MAIN repository. In the example below, the variable curpro is equal to pro2.

2.3.6.4 Retrieving schemas from the current project
A DBMProject object represents the project and provides basic methods for accessing repository
objects. For instance, it offers several methods for accessing to the main products of a project: DBMS-
chema.
As an illustration1, the first version of program Sample must be executed from DB-MAIN after the loa-
ding of a project. Note that the name of the method called by DB-MAIN (to execute a Java plug-in
menu File/Execute plug-in…) must be "runDBM" (without any parameters). This program accesses all
the schemas of a project.

class Sample {
 public static void runDBM() throws IOException {
 DBMProject pro = new DBMProject();
 if (pro != null) {
 DBMSchema sch = pro.getFirstProductSchema();
 if (sch != null) {
 // analyze the schema ...

1. See chapter 5 for more complete examples.

2.3 JIDBM principles 7
 sch = pro.getNextProductSchema(sch);
 }
 }
 }
}

The second version of program Sample must be executed in a console. The "main" method has a para-
meter (path and name of a LUN file).

class Sample {
 public static void main (String[] args) throws IOException {
 if(args.length != 1){
 System.err.println("usage : Sample <file_name>");
 System.exit(1);
 }
 DBMLibrary lib = new DBMLibrary();
 // load the project in file named args[0] in DB-MAIN repository
 DBMProject pro = lib.loadDBMProject(args[0]);
 if (pro != null) {
 DBMSchema sch = pro.getFirstProductSchema();
 if (sch != null) {
 // analyze the schema ...
 sch = pro.getNextProductSchema(sch);
 }
 // save the project into file named args[0].
 lib.unloadLUN(pro.getProjectIdentifier(),args[0]);
 pro.deleteProject();
 }
 }
}

8 Chapter 2 Introduction

Chapter 3

Class specifications

Section 3.1 describes the JIDBM class architecture and section 3.2 gives some information about spe-
cial classes of the JIDBM library.

3.1 JIDBM repository architecture
This section presents the DB-Main repository structures for the JIDBM library. This repository is
shown as an extended ER1 schema containing entity types (or classes), relationship types (or rel-types)
and attributes (or fields).
The repository is too large to be shown on a single page. For this reason, its definition has been divided
into five views according to the ontology that it can model:

• The project view (section 3.1.2) models the project window in the DB-MAIN CASE tool.
• The data view (section 3.1.3) corresponds to the representation of the ER and UML class dia-

gram schemas.
• The process view (section 3.1.4) describes the model for processing schema like UML activity

and use case diagrams.
• The concrete view (section 3.1.5) shows how graphical, description and note information are sto-

red in the repository.
• The inheritance view (section 3.1.6) is an overview of the inheritance mechanism in the reposi-

tory.
In the following sections, only descriptions of repository objects are given. The reader, interested by
further information on interface definition, fields and methods, must refer to the javadoc of the JIDBM
package (distributed with DB-MAIN in the Documentation\Manuals\Jidbm directory).
Note that the repository is built to be as general as possible, but DB-MAIN does not always use all its
capabilities. Constructs not used by DB-MAIN are reported below. Some of these constructs can be
used by a Java program without damage for DB-MAIN, but using other constructs may be hazardous,
as mentioned when it is the case.

3.1.1 Naming conventions
In the JIDBM package, the following naming conventions are used.

1. Entity/Relationship.

10 Chapter 3 Class specifications
3.1.1.1 Class naming
The class names are prefixed by DBM and the first letter of any subsequent word are capitalized.
Example: DBMProductSet (see figure 3.1 in section 3.1.2).

3.1.1.2 Field naming
The field names start with a lower-case letter and the first letter of any subsequent word is capitalized.
The names of fields being used as constants are all upper-case.
Examples (see figure 3.1 in section 3.1.2): field fileType of DBMText class can get the constant value
FILE_GEN_DIC (dictionary report file).

3.1.1.3 Method naming
The method names start with a lower-case letter and the first letter of any subsequent word are capitali-
zed. The methods are divided into three categories:

a) Method on fields
The method to get or update class fields are called getField() or setField(new value).
Examples (see figure 3.1 in section 3.1.2): getCreationDate() and setCreationDate(…) of DBMPro-
ject.
There are three exceptions to this rule:
1. A method to get a boolean field is called isField().

Example (figure 3.2 in section 3.1.3): isStable() of DBMSimpleAttribute.
2. Some fields are integers considered arrays of bits where each cell indicates if a constant field is veri-

fied or not. In these cases, the method verifying the constant is called isFieldConstant(constant
name).
Example (see figure 3.1 in section 3.1.2): isFunctionConstant(…) of DBMMetaProperty.

3. The meta-property values are accessible by the methods defined on DBMGenericObject class:
− if the meta-property is mono-valued: getMetaPropertyValue(meta-property name), getMetaPro-

perty[Type]Value(meta-property name), setMetaPropertyValue(meta-property name, new value)
and setMetaProperty[Type]Value(meta-property name, new value) where [Type] = "Boolean",
"Char", "Int", "Double" and "String".

− if the meta-property is multi-valued: getMetaPropertyListValue(meta-property name), getMeta-
Property[Type]ListValue(meta-property name), setMetaPropertyListValue(meta-property
name,new value array) and setMetaProperty[Type]ListValue(meta-property name,new value
array) where [Type] = "Boolean", "Char", "Int", "Double" and "String".

b) Methods on relationships between classes
The methods to get a class through a link between two classes are called:

• getFirstClass(), getLastClass(), getNextClass(previous object) and getPreviousClass(next
object) if the class has a collection of objects (i.e. the class plays a role 0-N in the relationship
between the two classes).
Examples (see figure 3.1 in section 3.1.2): getFirstProduct(), getLastProduct(), getNextPro-
duct(…) and getPreviousProduct(…) of DBMProject.

• getClass() if the class is linked to only one object (i.e. the class plays a role 1-1 or 0-1 in the rela-
tionship between the two classes).
Example (see figure 3.1 in section 3.1.2): getProject() of DBMProduct.

• if the accessed class has subtypes, get methods are also defined on the subtypes. In this case, sub-
type class names are added at the end of the get method names.
Examples (see figure 3.1 in section 3.1.2): getFirstProductSchema(), getLastProductSchema(),
getNextProductSchema(…) and getPreviousProductSchema(…) of DBMProject.

3.1 JIDBM repository architecture 11
• To avoid ambiguity when classes are linked by more than one rel-type, the relationship name is
also used in the get method name.
Example (see figure 3.1 in section 3.1.2): getFirstToConnection(), getLastToConnection(),
getNextFromConnection(…) and getPreviousFromConnection(…) of DBMProduct.

• Because multi-valued compound attributes can have groups and belong to groups, the methods to
get the groups that contain a specific component are called getFirstMemberOfGroup(), getLast-
MemberOfGroup(), getNextMemberOfGroup(…) and getPreviousMemberOfGroup(…). This is
an exception to the previous rules in order to avoid ambiguity.

The methods to add a link between two classes are called:
• addFirstClass(current object) and addNextClass(current object, previous object) if the class has

a collection of object (i.e. the class plays a role 0-N in the relationship between the two classes).
Examples (see figure 3.1 in section 3.1.2): addFirstProduct(…) and addNextProduct(…) of
DBMProject.

• Methods called addClass() are only defined if the parent class plays a role 1-1 or 0-1 in a one-to-
one (all roles have a maximum cardinality of 1) relationship.
Examples (figure 3.3 in section 3.1.4): addProcessingUnitCardinality(…) of DBMConsumption.

• To avoid ambiguity when classes are linked by more than one rel-type, the relationship name is
also used in the add method name.
Examples (see figure 3.1 in section 3.1.2): addFirstToConnection (…) and addNextFromCon-
nection (…) of DBMProduct.

The methods to remove links between two classes are called removeClass(). These methods are defined
on each side of the rel-types. Their names follow same rules as get methods except that remove methods
are not propagated to the subtypes.
Examples: removeProduct(), removeFromConnection(), removeToConnection() and removeMemberO-
fGroup(). Method removeProductSchema() does not exist.

c) Methods on classes
Methods to create a new object are called createClass(parameters) or createUniqueClass(parameters)
where parameters describe all the fields of the new object and the object linked by a mandatory 1-1
role. Sometimes parameters also contain the previous object in the collection list of the parent object.
createUniqueClass methods ensure that the name of the created object is unique in the repository (suf-
fix must be added). These methods are defined on the parent class (playing a 0-N role in the rel-type)
and only exist for final subtypes. Note that, in the DB-MAIN repository, project and meta-object cannot
be created.
Example (see figure 3.1 in section 3.1.2): createSchema(String name, String short_name, String ver-
sion, Date creation_date, Date last_update, char type, DBMSchema prev) of DBMProject.

Methods to delete an object are called deleteClass() and are defined on the class and any subtypes.
Examples (see figure 3.1 in section 3.1.2): deleteProduct() of DBMProduct and deleteSchema() of
DBMSchema.

Methods to transform an object are called transfoInto...() (or something like that) and are defined on the
objects that can be transformed.
Examples (see figure 3.2 in section 3.1.3): transformIntoEntityType() of DBMAttribute.

Methods to copy a given object are called copyClass(parameters) where parameters describe the origi-
nal object and the previous object in the collection list of the parent object. These methods are defined
on the parent class (playing a 0-N role in the rel-type) and only exist for final subtypes. Note that the

12 Chapter 3 Class specifications
copySchema method is defined on the DBMSchema class and the parameters are name, version and
process name (name of the process in the history).
Examples (see figure 3.1 in section 3.1.2): copyEntityType(DBMEntityType ent, DBMEntityType prev)
of DBMSchema.

3.1.2 The project view
Each DB-MAIN repository describes all the specifications related to a project as well as the activities
that were carried out to produce these specifications. A logical piece of specification appears as a pro-
duct. This section analyzes the concepts of project, product and meta-definition (figure 3.1).

0-N1-1

0-N

0-N

1-1

0-N

0-N 1-1

0-N

1-1

0-N1-1
T o

0-N1-1
From

P

DBMTextLine
number
description[0-1]
id: .DBMText

number

DBMT ext
path
fi leT ype

DBMSchema
type

DBMProject
creationDate
fi lename
id: DBMConcreteObject.name

DBMProductSet

DBMProduct
version
creationDate
lastUpdate
id: DBMConcreteObject.name

version
.DBMProject

DBMMetaProperty
type
function
id: .DBMMetaObject

DBMConcreteObject.name

DBMMetaObject
type
id: .DBMProject

DBMConcreteObject.name

DBMConnection
type
sequenceNumber
id: To.DBMProduct

From.DBMProduct

Figure 3.1 - The project view of the DB-Main repository for JIDBM.

3.1.2.1 DBMProject
A DBMProject object represents the project in DB-MAIN repository. There is only one instance of this
object in DB-MAIN. The JIDBM library does not allow programmers to create a new project. To
achieve that, the project must be created in DB-MAIN (Menu File/New Project…). Once the project is
loaded or created in DB-MAIN, to access it, an instance of the object DBMProject is created by:

DBMProject pro = new DBMProject();

The DBMProject class has the field creationDate. DBMProject inherits properties of DBMConcreteOb-
ject. This class contains fields name, shortName, semanticDescription and technicalDescription. A
DBMProject instance is identified by its name.
A project is made up of a collection of products (DBMProduct). The products fall into three classes:
data and process schemas (DBMSchema), files (DBMText) and product sets (DBMProductSet). A pro-
ject also has a collection of meta-objects (DBMMetaObject).

3.1.2.2 DBMMetaObject and DBMMetaProperty
The repository part made up of the DBMMetaObject and DBMMetaProperty classes are called the
meta-definition.
A DBMMetaObject object represents the meta-objects of the DB-MAIN repository. The meta-objects
are predefined in the repository. They describe the main object types in DB-MAIN and allow dynamic
properties to be defined. The JIDBM interface does not allow creating or modifying meta-objects. A
meta-object has a name, a semanticDescription (from super-type DBMConcreteObject) and a type. It is
identified by its name and project. The predefined DBMMetaObjects are:

3.1 JIDBM repository architecture 13
Table 3.1 - The predefined meta-objects in DB-MAIN repository.

DBMMetaObject
Corresponding JIDBM Class

name type
Project DBMGenericObject.SYSTEM DBMProject
Schema DBMGenericObject.SCHEMA DBMSchema
Text DBMGenericObject.TEXT DBMText
Product set DBMGenericObject.PROD_SET DBMProductSet
Entity type DBMGenericObject.ENTITY_TYPE DBMEntityType
Rel-type DBMGenericObject.REL_TYPE DBMRelationshipType
Atomic attribute DBMGenericObject.SI_ATTRIBUTE DBMSimpleAttribute
Compound attribute DBMGenericObject.CO_ATTRIBUTE DBMCompoundAttribute
Group DBMGenericObject.GROUP DBMGroup
Role DBMGenericObject.ROLE DBMRole
Collection DBMGenericObject.COLLECTION DBMCollection
Processing unit DBMGenericObject.PROC_UNIT DBMProcessingUnit
Processing unit relation DBMGenericObject.REL_ELEMENT DBMElementRelation
Association DBMGenericObject.CONSUMPTION DBMConsumption
Use case association role DBMGenericObject.CONS_PU DBMProcessingUnitCardinality
Actor association role DBMGenericObject.CONS_RES DBMResourceCardinality
Actor DBMGenericObject.RESOURCE DBMResource
Actor generalization DBMGenericObject.RE_ISA DBMResourceSubType
State DBMGenericObject.STATE DBMState
In-out DBMGenericObject.ENVIRONMENT DBMEnvironment

A meta-object has a collection of meta-properties (DBMMetaProperty) and belongs to a project.
DBMMetaProperty represents a dynamic property of a meta-object. To each meta-object predefined in
DB-MAIN, some meta-properties are created automatically. The user can manage all of them and
create new ones to DB-MAIN meta-objects. The new meta-properties will be managed by DB-MAIN.
A dynamic property is a new property for the corresponding DB-MAIN repository objects.
A meta-property has a name, semanticDescription (from super-type DBMConcreteObject), a type and a
function. It is identified by its name and meta-object. The following table describes the possible values
of the fields type and function.

Field type of DBMMetaProperty class
Constant Description

DBMMetaProperty.BOO_ATT Boolean type
DBMMetaProperty.CHAR_ATT Character type
DBMMetaProperty.CHAR_ATT Real type
DBMMetaProperty.NUM_ATT Integer type
DBMMetaProperty.VARCHAR_ATT String type

Field function of DBMMetaProperty class
Constant Description

DBMMetaProperty.MODIF_MP Updatable meta-property
DBMMetaProperty.MULTI_MP Multi-valued meta-property

Table 3.2 - Constants of the fields type and function in the DBMMetaProperty class.

14 Chapter 3 Class specifications
For example, the code below creates a new multi-valued and predefined meta-property "Owner" for the
object Schema:

DBMProject pro = new DBMProject();
// Create the "Owner" meta-property
DBMMetaObject mo = pro.getFirstMetaObject();
while (mo != NULL) {
 if (mo.getType() == DBMGenericObject.SCHEMA) {
 DBMMetaProperty mp = mo.createMetaPproperty(
 "Owner", DBMMetaProperty.VARCHAR_ATT,
 DBMMetaProperty.MULTI_MP & DBMMetaProperty.PREDEF_MP,
 NULL);
 mp.setSemanticDescription("#VALUES=\nJohn\nRichard\nLee\n#");
 break;
 }
 mo = pro.getNextMetaObject(mo);
}

The meta-property "Owner" values2 can be obtained by the following code:

DBMProject pro = new DBMProject();
DBMSchema sch = pro.getFirstProductSchema();
while (sch != NULL) {
 Object [] l;
 l = sch.getMetaPropertyListValue("Owner");
 if (l != null) {
 if (l.length > 0) {
 System.out.print("Owner: ");
 int i = 0;
 while (i < l.length) {
 System.out.print(l[i]+" ");
 i = i + 1;
 }
 System.out.print("\n");
 }
 }
 sch = pro.getNextProductSchema(sch);
}

3.1.2.3 DBMProduct and DBMConnection
DBMProduct is the super-type of DBMSchema, DBMText and DBMProductSet. DBMProduct has fields
name, shortName, semanticDescription, technicalDescription (inherited from super-type DBMConcre-
teObject), version, creationDate and lastUpdate. An instance of DBMProduct is identified by its name,
version and project. A product can be an item of several product sets (see section 3.1.2.6).
DBMConnection represents a connection that establishes an oriented link between product objects
(DBMProduct) like schemas (DBMSchema), documents (DBMText) or product sets (DBMProductSet).
A product can have a collection of connections through the rel-types To and From. An instance of
DBMConnection is linked to the origin product by the relationship From and to the target product by

DBMMetaProperty.PREDEF_MP Meta-property with predefined values
(defined in field semanticDescription)

DBMMetaProperty.SYSTEM_MP System meta-property

2. The method to obtain or modify meta-property values are defined on the DBMGenericObject class (see also section
3.1.1.3 for more details).

Table 3.2 - Constants of the fields type and function in the DBMMetaProperty class.

3.1 JIDBM repository architecture 15
the relationship To. DBMConnection has the fields: type (see table below for possible values) and
sequenceNumber (to order connections of a product).

Table 3.3 - Constants of the field type in the DBMConnection class.

Field type of DBMConnection class
Constant Description

DBMConnection.CON_COPY Copy link between two products
DBMConnection.CON_DIC Report link between a schema and a text
DBMConnection.CON_GEN Generation link between a schema and a text
DBMConnection.CON_INTEG Integration link between two schemas
DBMConnection.CON_XTR Extract link between a text and a schema

3.1.2.4 DBMText and DBMTextLine
DBMText represents a document like files, documentation, programs, DDL3 code, etc. Since DBMText
is a subtype of DBMProduct, it inherits fields and methods of DBMProduct. It also has the fields: path
(the path of the file) and fileType (the table below describes the predefined values). A text can have a
collection of text lines.

Table 3.4 - Constants of the field typeFile in the DBMText class.

Field typeFile of DBMText class
Constant Description

DBMText.FILE_GEN_DIC Report generation file
DBMText.FILE_GEN_SQL_AC Academic SQL generation file
DBMText.FILE_GEN_SQL_ACCESS Access generation file
DBMText.FILE_GEN_SQL_INTERBASE Interbase generation file
DBMText.FILE_GEN_SQL_MYSQL MySQL generation file
DBMText.FILE_GEN_SQL_POSTGRESQL PostgreSQL generation file
DBMText.FILE_GEN_SQL_STD Standard SQL generation file
DBMText.FILE_XTR_COB COBOL extraction file
DBMText.FILE_XTR_COD CODASYL extraction file
DBMText.FILE_XTR_IMS IMS extraction file
DBMText.FILE_XTR_SQL SQL extraction file

DBMTextLine represents a text line. This class has the field: number (the line number in the correspon-
ding text) and description (a free text on the line). This class allows annotating lines of a text represen-
ted by an instance of the class DBMText.

3.1.2.5 DBMSchema
DBMSchema represents a generalized data or process schema. A schema belongs to only one DBMPro-
ject and is identified by its name and version.
Since DBMSchema is a subtype of DBMProduct, it inherits properties and methods of DBMProduct. It
also has the field: type (table below describes possible values).

Table 3.5 - Constants of the field type in the DBMSchema class.

field type of DBMSchema class
Constant Description

DBMSchema.ERASCHEMA Entity-Relationship schema
DBMSchema.UMLACTIVITY UML activity diagram
DBMSchema.UMLCLASSSCHEMA UML class diagram
DBMSchema.UMLUSECASE UML use case diagram

3. Data Definition Language.

16 Chapter 3 Class specifications
3.1.2.6 DBMProductSet
DBMProductSet represents a set of products that can contain any number of products. A product set can
contain a collection of products. An integrity constraint is that a set cannot contain itself.
Since DBMProductSet is a subtype of DBMProduct, it inherits properties and methods of DBMProduct.

3.1.3 The data view
The data view (figure 3.2) models data schemas. It mainly comprises entity types, rel-types, attributes,
domains, collections, anchored processing units and various constraints (expressed as properties of
groups of components).

1-1

0-N

0-N
0-N

1-1

0-N

0-N

1-1

1-1

0-N

0-N

MemberOf
0-N

1-N 1-1

0-N

1-1

1-10-N

0-N

0-1

1-1
1-N

1-1

0-N

1-1

0-N

1-1

0-N
0-N

1-N

P

P

P

P

P

P

DBMSubType
value[0-1]

DBMSimpleAttribute
type
stable[0-1]
recyclable[0-1]
length
decimalNumber[0-1]

DBMSchema
type

DBMRole
minimumCardinality
maximumCardinality
aggregation

DBMRelationshipType

DBMProcessingUnitOw ner

DBMProcessingUnit
type[0-1]
mode[0-1]

DBMGroup
type[0-1]
function
minimumCardinality
maximumCardinality

DBMEntityType

DBMEntityRelationshipType

DBMDataObject

DBMConstraintMember
memberRole[0-1]

DBMConstraint
type

DBMCompoundAttribute

DBMCollection

DBMCluster
clusterIdentif ier
type
criterion[0-1]
id: clusterIdentif ier

.DBMEntityType

DBMAttributeOw ner

DBMAttribute
minimumCardinality
maximumCardinality
setType

Component

Figure 3.2 - The data view of the DB-Main repository for JIDBM.

3.1.3.1 DBMSchema
A data schema mainly consists of entity types (DBMEntityType), rel-types (DBMRelationshipType) and
collections (DBMCollection). A schema can own several data objects (DBMDataObject) and collec-
tions (DBMCollection). It has two interfaces that implement attribute (DBMAttributeOwner) and pro-
cessing unit (DBMProcessingUnitOwner) owners. This part of JIDBM repository is used to manage ER
schemas and UML class diagrams. An UML class diagram is the same as an ER schema. Only the gra-
phical view of these schemas is different. In particular, the roles of a rel-type are stored in the repository
in the same way for UML class diagrams as for ER schemas, even if they are inverted on screen. Note
that non-binary rel-types are difficult to manage in a UML class diagram, so they should be avoided,
even if they are permitted.

3.1.3.2 DBMCollection
DBMCollection denotes a collection that is a repository for data objects. In fact, in a data schema, DB-
MAIN only supports entity types in collections. An instance of collection can comprise entities from

3.1 JIDBM repository architecture 17
different entity types, and the entities of a given type can be stored in several collections. A collection
has fields name, shortName, semanticDescription and technicalDescription (inherited from DBMCon-
creteObject). It always belongs to only one schema and is identified by its name and schema. A collec-
tion can contain several data objects (only entity types).

3.1.3.3 DBMDataObject
DBMDataObject is a generalization of objects denoting entity types (DBMEntityType), rel-types
(DBMRelationshipType), attributes (DBMAttribute) and processing units (DBMProcessingUnit).
DBMDataObject is the main object of a schema. A data object has fields name, shortName, semanti-
cDescription and technicalDescription (inherited from DBMConcreteObject). It can belong to several
collections (see section 3.1.3.2), can have several groups (see section 3.1.3.11) and can be the domain
of several simple attributes (see section 3.1.3.8). A data object always belongs to only one schema.

3.1.3.4 DBMEntityRelationshipType
DBMEntityRelationshipType instances are generalizations of entity types (DBMEntityType) and rel-
types (DBMRelType). Since DBMEntityRelationshipType is a subtype of DBMDataObject, it inherits all
the properties and methods of DBMDataObject. A entity-rel-type can be owner of attributes (through
interface DBMAttributeOwner, see section 3.1.3.12) and processing units (through interface DBMPro-
cessingUnit, see section 3.1.3.13).

3.1.3.5 DBMEntityType, DBMCluster and DBMSubType
DBMEntityType denotes an entity type (also called class in UML class diagram) of data schemas. Since
DBMEntityType is a subtype of DBMEntityRelationshipType, it inherits all its properties and methods.
Using the inheritance mechanism, entity types can belong to collections, have attributes and processing
units. It can play roles in rel-types (see section 3.1.3.6), and be generalization/specialization of other
entity types. An instance of DBMEntityType is identified by its name and schema.
The repository allows an entity-type to be specialised in several ways (e.g. persons divided in male/
female or children/adult). To do so, an entity type can be linked to several clusters (DBMCluster), one
for the gender and one for the age in the example. These clusters can have several subtypes (DBMSub-
Type), with values "male" and "female" for the cluster gender, "adult" and "children" for the cluster age.
But, in practice, DB-MAIN does not support multiple clusters, so each entity type should not be linked
to more than one cluster.
DBMCluster denotes a specialization for an entity type. A cluster has fields clusterIdentifier, type and
criterion. The clusterIdentifier field is a string to identify the cluster among others of the same entity
type. The field type can have the values DBMCLuster.DISJOINT_CLU (the subtype collection is decla-
red disjoint), DBMCLuster.TOTAL_CLU (the subtype collection is declared total) or the combining of
two previous values (the subtype collection is a partition). The criterion field is a string representing the
selection criterion. A cluster must have one or more subtypes.
DBMSubType denotes the possible subtypes of a cluster. A subtype has a value (the criterion value to
specialize the entity types). It is identified by its value, cluster and entity type.

3.1.3.6 DBMRelationshipType and DBMRole
DBMRelationshipType denotes a rel-type (also called association in UML class diagram) of data sche-
mas. Since DBMRelationshipType is a subtype of DBMEntityRelationshipType, it inherits all the fields
and methods of DBMEntityRelationshipType. A rel-type may own attributes, processing units and
groups in the same way as entity types. Each rel-type is attached to exactly one schema and identified
by its name and schema. A rel-type can have a collection of roles.
DBMRole denotes a role of rel-type. A role is characterized by fields name, shortName, semanticDes-
cription, technicalDescription technicalDescription (inherited from DBMConcreteObject), minimum-
Cardinality, maximumCardinality (DBMRole.N_CARD constant indicating infinity) and aggregation.
The values of field aggregation are: DBMRole.AGGREGATION denotes an UML aggregation associa-
tion and DBMRole.COMPOSITION denotes an UML composition association. A role is always linked
to a single rel-type. A role can be played by several entity-types and an entity type can play roles in

18 Chapter 3 Class specifications
several rel-types. A role can be member of several groups (through virtual class Component, see section
3.1.3.11). Each role is identified by its name, entity types and the rel-type it depends on.

3.1.3.7 DBMAttribute
DBMAttribute describes the properties (or fields) of attribute owners. It is a generalization of DBMSim-
pleAttribute and DBMCompoundAttribute. All the properties of an attribute are shared with subtypes by
the inheritance principles. Since DBMAttribute is a subtype of DBMDataObject, it inherits all the fields
and methods of DBMDataObject. An attribute has fields minimumCardinality, maximumCardinality
(DBMAttribute.N_CARD constant indicating infinity) and setType. The field setType defines the set
type value for a multi-valued attribute (maximumCardinality greater than one). The setType possible
values are given in the table below.

Table 3.6 - Constants of the field setType in the DBMAttribute class.

Field setType of DBMAttribute
Constant Description

DBMAttribute .ARRAY_ATT Array type: indexed sequence of cells that can each contain an element
DBMAttribute .BAG_ATT Bag type: unstructured collection of elements
DBMAttribute .LIST_ATT List type: sequenced collection of elements
DBMAttribute .SET_ATT Set type: unstructured collection of distinct elements
DBMAttribute .UARRAY_ATT Unique array type: indexed sequence of cells that can each contain a distinct

element
DBMAttribute .ULIST_ATT Unique list type: sequenced collection of distinct elements

An attribute can be member of several groups (through virtual class Component, see section 3.1.3.11).
It belongs to only one owner of attribute (represented by DBMAttributeOwner class, see section
3.1.3.12). The DBMAttributeOwner class is a interface in the JIDBM library. It is a abstract class which
is a generalization of the attribute’s parent (entity type, rel-type or compound attribute). An attribute is
identified by its name and owner.

3.1.3.8 DBMSimpleAttribute
DBMSimpleAttribute represents simple attributes (i.e. attributes with atomic type). Since DBMSim-
pleAttribute is a subtype of DBMAttribute, it inherits all the properties and methods of DBMAttribute.
A simple attribute has fields type, stable (value cannot be changed) and recyclable (value can be
reused) properties, length (total length) and decimalNumber (number of decimals among the total
length). The possible values of the field type are:

Table 3.7 - Constants of the field type in the DBMSimpleAttribute class.

Field type of DBMSimpleAttribute
Constant Description

DBMSimpleAttribute.BOO_ATT Boolean type
DBMSimpleAttribute.CHAR_ATT Character type
DBMSimpleAttribute.DATE_ATT Date type
DBMSimpleAttribute.FLOAT_ATT Real type
DBMSimpleAttribute.INDEX_ATT Index type
DBMSimpleAttribute.NUM_ATT Integer type
DBMSimpleAttribute.OBJECT_ATT Object type
DBMSimpleAttribute.SEQ_ATT Sequence type
DBMSimpleAttribute.USER_ATT User-defined type
DBMSimpleAttribute.VARCHAR_ATT String type

Object type attributes are represented by DBMSimpleAttribute objects whose field type equals constant
DBMSimpleAttribute.OBJECT_ATT and which are connected to a data object. This data object must be
an entity type. User-defined attributes are represented by DBMSimpleAttribute objects whose field type

3.1 JIDBM repository architecture 19
equals constant DBMSimpleAttribute.USER_ATT and which are connected to a data object. This data
object must be an attribute. This attribute must belong to the special entity type "]DOMAINS-ATTRI-
BUTES[" which belongs to the special schema named "]DOMAINS[" (with version "]USER-DEFI-
NED[").All other attributes are represented by DBMSimpleAttribute instances not linked to a data
object. The field type identifies the type of the attribute.

3.1.3.9 DBMCompoundAttribute
DBMCompoundAttribute describes compound attributes. Since DBMCompoundAttribute is a subtype
of DBMAttribute, it inherits all the properties and methods of DBMAttribute. A compound attribute
may own attributes and groups in the same way as entity types and rel-types.

3.1.3.10 DBMProcessingUnit
In data schemas, DBMProcessingUnit describes processing units (method, procedure, trigger or predi-
cate) anchored either to a schema, an entity type or a rel-type. For representing a more precise defini-
tion of a processing unit, the DB-MAIN user will use a UML activity or use case diagram (see section
3.1.4.3). Since DBMProcessingUnit is a subtype of DBMDataObject, it inherits all the properties and
methods of DBMDataObject. A processing unit has fields type and mode. The field mode is only used
in process schema (see section 3.1.4.3).The field type defines the processing unit type which the possi-
ble values are:

Table 3.8 - Constants of the field type in the DBMProcessingUnit class

Field type of DBMProcessingUnit
Constant Description

DBMProcessingUnit.METHOD_TYPE_PU Method type
DBMProcessingUnit.PREDICAT_TYPE_PU Predicat type
DBMProcessingUnit.PROCEDURE_TYPE_PU Procedure type
DBMProcessingUnit.TRIGGER_TYPE_PU Trigger type

A processing unit belongs to only one owner (represented by DBMProcessingUnitOwner class see sec-
tion 3.1.3.13). The DBMProcessingUnitOwner class is an interface in the JIDBM library. It is a abstract
class which is a generalization of the parent (entity type, rel-type or schema) of a processing unit. A
processing unit is identified by its name and owner.

3.1.3.11 DBMGroup, DBMConstraint and DBMConstraintMember
DBMGroup describes a group made up of attributes, roles or other groups. A group represents a cons-
truct attached to an entity type, a rel-type or a multi-valued compound attribute. It is used to represent
concepts such as identifiers, foreign keys, indexes, sets of exclusive or coexistent attributes … A entity
type group can comprise inherited attributes and roles, i.e., components from its direct or indirect super-
types.
A group has fields name, semanticDescription, technicalDescription (inherited from DBMConcreteOb-
ject), type, function, minimumCardinality and maximumCardinality (DBMGroup.N_CARD constant
indicating infinity). The field type is not used and the field function (defining the group functions) can
have the values in the table below. A group can have many values for field function (e.g.
DBMGroup.PRIM_GR and DBMGroup.KEY_GR).

Field function of DBMGroup
Constant Description

DBMGroup.AL1_GR At-least-one constraint
DBMGroup.COEX_GR Coexistence constraint
DBMGroup.CST_GR Generic user-defined constraint
DBMGroup.EXCL_GR Exclusion constraint
DBMGroup.ID_GR Identifier (primary or secondary)

Table 3.9 - Constants of the field type in the DBMGroup class.

20 Chapter 3 Class specifications
A group belongs to a data object (entity type, rel-type or multi-valued compound attribute). It is identi-
fied by its name and data object. It can have a collection of components (represented by Component
class). The Component class does not exist in the JIDBM library. It is a virtual class which is a genera-
lization of the members (attributes, roles or other groups) of a group. Note that, in an entity type, the
roles that can be part of a group are the "far" roles of the rel-types into which the entity type participa-
tes. A group can be the support of several constraint members.
An inter-group constraint (like a referential constraint between a reference group and an identifier) is
represented by an instance of class DBMConstraint. A constraint has a field type for which the possible
values are:

Table 3.10 - Constants of the field type in the DBMConstraint class.

Field type of DBMConstraint
Constant Description

DBMConstraint.EQ_CONSTRAINT Equality constraint
DBMConstraint.GEN_CONSTRAINT Generic user-defined constraint
DBMConstraint.INC_CONSTRAINT Inclusion constraint
DBMConstraint.INV_CONSTRAINT Inverse constraint
DBMConstraint.REF_CONSTRAINT Referential constraint

A constraint is linked to one or more group through the DBMConstraintMember class representing the
constraint member. A member constraint has a memberRole field which can have the following predefi-
ned values:

Table 3.11 - Constants of the field memberRole in the DBMConstraintMember class.

Field memberRole of DBMConstraintMember
Constant Description

DBMConstraintMember.OR_MEM_CST Constraint origin
DBMConstraintMember.TAR_MEM_CST Constraint target

A constraint member materializes the link between a constraint and groups implied in this constraint. It
is identified by its constraint and group. DB-MAIN presently supports constraints between two groups
only. The origin group of the constraint should be linked to a constraint member with the field member-
Role sets to the constant DBMConstraintMember.OR_MEM_CST, and the target group should be linked
to a member constraint with the field memberRole sets to the constant DBMConstraintMem-
ber.TAR_MEM_CST. These two constraint members must be linked to the same constraint.

3.1.3.12 DBMAttributeOwner
DBMAttributeOwner is an interface for attribute owners (DBMCompoundAttribute and DBMEntityRe-
lationshipType). An interface is an abstract type that is used to specify an interface (in the generic sense
of the term) that classes must implement. It is used to encode similarities (methods to manage attribu-
tes: create, get, copy, remove, transform, ...) which classes of various types share.

3.1.3.13 DBMProcessingUnitOwner
DBMProcessingUnitOwner is an interface for processing unit owners (DBMSchema and DBMEntity-
RelationshipType). An interface is an abstract type that is used to specify an interface (in the generic
sense of the term) that classes must implement. It is used to encode similarities (methods to manage
processing units: create, get, copy, remove, ...) which classes of various types share.

DBMGroup.KEY_GR Access key constraint (index)
DBMGroup.NONE_GR No constraint
DBMGroup.PRIM_GR Primary identifier
DBMGroup.SEC_GR Secondary identifier

Table 3.9 - Constants of the field type in the DBMGroup class.

3.1 JIDBM repository architecture 21
3.1.4 The process view
Independent processing units such as program, procedures, activities or use cases need being defined in
specific products, namely the processing schemas. A processing view (figure 3.3) models processing
schemas including action states, internal objects, external objects, states, use cases, actors and relations.

1-1

0-N

0-N

1-1

0-N

1-1

0-N

1-1

0-N
1-1

1-1

1-1

0-N

1-1

1-1

1-1

0-N

1-1

Specialize

0-N

1-1

PartOf

0-N

1-1

MadeOf

0-1

0-N

MadeOf

0-N

0-1

Invoke
0-N

1-1

Generalize

P

DBMState
id: DBMConcreteObject.name

.DBMSchem a

.DBMGenericObject

DBMSchem a
type

DBMResourceSubType
id: Specialize.DBMResource

Generalize.DBMResource

DBMResourceCardinality
m inim um Cardinality
maximumCardinality

DBMResource
type
id: DBMConcreteObject.nam e

.DBMSchem a

DBMProcess ingUnitCardinality
m inim um Cardinality
m axim um Cardinality

DBMProcess ingUnit
type[0-1]
m ode[0-1]
id: DBMConcreteObject.nam e

.Process ingUnitOwner

DBMGenericObject
objectIdentifier
objectType
flag
id: objectIdentifier

DBMEnvironm ent
type
m ode[0-1]
id: .DBMProcess ingUnit

.DBMState

DBMElem entRelation
type[0-1]
m ode[0-1]
id: PartOf.DBMElem ent

MadeOf.DBMElem ent

DBMElem ent
type
mode
description[0-1]

DBMDataObject

DBMConsum ption

Figure 3.3 - The process view of the DB-MAIN repository for JIDBM.

3.1.4.1 DBMSchema
A process schema mainly consists of processing units (DBMProcessingUnit), states (DBMState) and
resources (DBMResource). A schema can own several data objects (DBMDataObject). This part of
JIDBM repository is used to manage UML activity and use case diagrams. A UML activity diagram
(field type equals constant DBMSchema.UMLACTIVITY_DIAGRAM) is made up of processing units,
with various roles and various graphical representations, object states and relations between all these
components. A UML use case diagram (field type equals constant DBMS-
chema.UMLUSECASE_DIAGRAM) is made up of use cases (represented by processing units), actors
(represented by resources) and relations between these objects.

3.1.4.2 DBMDataObject
DBMDataObject is a generalization of objects denoting processing units (DBMProcessingUnit, states
(DBMState), resources (DBMResource) and consumptions (DBMConsumption). DBMDataObject is the
main object of a process schema. A data object has the fields name, shortName, semanticDescription
and technicalDescription (inherited from DBMConcreteObject). A data object always belongs to one
schema only.

22 Chapter 3 Class specifications
3.1.4.3 DBMProcessingUnit
DBMProcessingUnit describes action states (in activity diagrams) or use cases (in use case diagrams).
Since DBMProcessingUnit is a subtype of DBMDataObject, it inherits all the properties and methods
of DBMDataObject. A processing unit has the fields type and mode. The field type can be used for
documentation (see section 3.1.3.10 for more details). The field mode defines the kind of action states.
Its possible values are:

Table 3.12 - Constants of the field mode in the DBMProcessingUnit class.

Field mode of DBMProcessingUnit
Constant Description

DBMProcessingUnit.DECISION_MODE_PU Decision state
DBMProcessingUnit.FINAL_MODE_PU Final state
DBMProcessingUnit.HOR_SYNC_MODE_PU Horizontal synchronisation bar
DBMProcessingUnit.INITIAL_MODE_PU Initial state
DBMProcessingUnit.SIGNAL_REC_MODE_PU Signal receipt
DBMProcessingUnit.SIGNAL_SEND_MODE_PU Signal sending
DBMProcessingUnit.VER_SYNC_MODE_PU Vertical synchronisation bar

The fields type and mode are not used when a processing unit describes a use case.
A processing unit also inherits roles played by data objects with groups and simple attributes, but it
never uses them. Using them can lead to unexpected behaviour of DB-MAIN, possibly to crash. A pro-
cessing unit belongs to only one owner (represented by DBMProcessingUnitOwner class). This owner
is always the schema. In process schema, a processing unit cannot be attached to entity types or rel-
types.
A processing unit can also have several environments representing object flows with states (see section
3.1.4.6). It can also be origin or target of elements (see section 3.1.4.5). A processing unit is identified
by its name and schema.

3.1.4.4 DBMState
DBMState represents a particular state of a data object at a given time. A data object is either an internal
attribute, or an external attribute, entity type, rel-type or collection. Internal means that the attribute is
part of the schema, and external means that the data object is in fact a reference to a data object defined
in a data schema (ER schema or UML class diagram). Since DBMState is a subtype of DBMDataOb-
ject, it inherits all its properties and methods. A state also inherits roles played by data objects with
groups and simple attributes, but it never uses them. Using them can lead to unexpected behaviour of
DB-MAIN, possibly to crash.
An object state is always linked to a generic object. This generic object must be the super-type of:
An internal attribute that must belong to the special entity type "VARIABLES" which belongs to the
same schema. This attribute must be simple or compound but does not participate to groups.
An external data object (attribute, entity type, rel-type or collection) defined into a data schema.
A state can also have several environments representing object flows with processing units (see section
3.1.4.6). It is identified by its name, schema and generic object.

3.1.4.5 DBMElement and DBMElementRelation
A control flow between two action states (processing units in activity diagram) and an extend, include
or generalization relation between two use cases (processing units in use case diagram) are represented
by an instance of DBMElementRelation class, and two instances of DBMElement class.
DBMElement describes an element. An element has fields type, mode (not used) and description (not
used). It is linked to an origin (through MadeOf relationship) or target (through Invoke relationship)
processing unit.

3.1 JIDBM repository architecture 23
DBMElementRelation describes an element relation. An element relation has fields name, semanti-
cDescription, technicalDescription (inherited from DBMConcreteObject), type (not used) and mode
(not used). It is linked to an origin (through MadeOf relationship) and a target processing units (through
PartOf relationship). It is identified by its two elements.
Elements and element relations are used to link processing units. An element is linked with MadeOf to
the processing unit from which the control flow is originating. Another element is linked with Invoke to
the processing unit to which the control flow is targeted. These two elements are linked by an element
relation whose type and mode fields can be left undefined. Note that each originating processing unit is
linked to at most one element with the same type value which is shared by all the relations of the same
kind originating from this processing unit. The field type of the two elements should have the following
values, according to the kind of relation:

Table 3.13 - Constants of the field type in the DBMElement class.

Field type of DBMElement
Constant Description

DBMElement.CTRL_SET_ELEM Origin of control flow
DBMElement.CTRL_TYPE_ELEM Target of control flow
DBMElement.EXTEND_SET_ELEM Origin of entend relationship
DBMElement.EXTEND_TYPE_ELEM Target of entend relationship
DBMElement.GEN_SET_ELEM Origin of generalization relationship
DBMElement.GEN_TYPE_ELEM Target of generalization relationship
DBMElement.INCLUDE_SET_ELEM Origin of include relationship
DBMElement.INCLUDE_TYPE_ELEM Target of include relationship

3.1.4.6 DBMEnvironment
In an activity diagram, an object flow is represented by an instance of DBMEnvironment class.
DBMEnvironment describes an environment. An environment has fields name, semanticDescription,
technicalDescription (inherited from DBMConcreteObject), type and mode. It is linked to a processing
unit (action state) and to an object state. The orientation of the link is stored in the mode field. The type
field reminds whether the object, whose state is linked, is internal or external. The possible values of
these two fields are:

Table 3.14 - Constants of the fields type and mode in the DBMEnvironment class.

Field type of DBMEnvironment
Constant Description

DBMEnvironment.EXT_TYPE_PENV Object flow with a data object of another schema
DBMEnvironment.INT_TYPE_PENV Object flow with a data object of the same schema

Field mode of DBMEnvironment
DBMEnvironment.IN_MODE_PENV Input object flow
DBMEnvironment.OUT_MODE_PENV Output object flow
DBMEnvironment.UPD_MODE_PENV Update object flow

An environment is identified by its state and processing unit.

3.1.4.7 DBMResource and DBMResourceSubType
In a use case diagram, DBMResource represents actors. Since DBMResource is a subtype of DBMDa-
taObject, it inherits all the properties and methods of DBMDataObject. A resource has also got a type
(not used) field. It also inherits roles played by data objects with groups and simple attributes, but it
never uses them. Using them can lead to unexpected behaviour of DB-MAIN, possibly to crash. A
resource can be structured as a hierarchy through Specialize and Generalize relationship. It can also
play several roles in association with processing units (see section 3.1.4.8). A resource is identified by
its name and schema.

24 Chapter 3 Class specifications
DBMResourceSubType represents an actor generalization in a use case diagram. A resource subtype has
fields name, semanticDescription, technicalDescription (inherited from DBMConcreteObject). It is lin-
ked to the most general resource with Generalize relationship, and to the specialized resource with Spe-
cialize relationship. It is identified by its subtype and super-type resources.

3.1.4.8 DBMConsumption, DBMProcessingUnitCardinality and
DBMResourceCardinality
In a use case diagram, an association between a use case (processing unit) and an actor (resource) is
represented by an instance of DBMConsumption class. Since DBMConsumption is a subtype of
DBMDataObject, it inherits all the properties and methods of DBMDataObject. A consumption also
inherits the roles played by data objects with groups and simple attributes, but it never uses them. Using
them can lead to unexpected behaviour of DB-MAIN, possibly to crash. A consumption is linked to a
processing unit cardinality object and to a resource cardinality object. It is identified by its name and
schema.
DBMProcessingUnitCardinality represents the cardinalities of a use case (processing unit) in an asso-
ciation (consumption). A processing unit cardinality has fields name, semanticDescription, technical-
Description (inherited from DBMConcreteObject), minimumCardinality and maximumCardinality
(DBMProcessingUnitCardinality.N_CARD constant indicating infinity). The minimumCardinality and
maximumCardinality fields show in how many instances of the use case each actor should participate.
A processing unit cardinality is linked to one processing unit and one consumption. It is identified by its
processing unit and consumption.
DBMResourceCardinality represents the cardinalities of an actor (resource) in an association (con-
sumption). A resource cardinality has fields name, semanticDescription, technicalDescription (inheri-
ted from DBMConcreteObject), minimumCardinality and maximumCardinality
(DBMResourceCardinality.N_CARD constant indicating infinity). The minimumCardinality and maxi-
mumCardinality fields show in how many actors of the same type should be associated with the use
case. A resource cardinality is linked to exactly one resource and one consumption. It is identified by its
resource and consumption.

3.1.5 The concrete view
The concrete view (figure 3.4) presents the graphical, description and note information of the DB-
MAIN repository objects.

1-1 0-N

0-N

1-1

1-N

1-1

0-N

1-1

0-N

1-1

0-N 1-1

P

UserViewOwner

DBMUserView
nam e
type
zoom
reduce
xGrid
yGrid
fontSize
fontNam e
textFontSize
textFontNam e
highlightingPlan
id: .UserViewOwner

nam e

DBMUserObject
xPos ition
yPos ition
color

DBMTextDBMSchem aDBMProject

DBMNoteRelation

DBMNote
description

DBMGenericObject
objectIdentifier
objectType
flag
id: objectIdentifier

DBMConcreteObject
nam e
shortNam e[0-1]
sem anticDescription[0-1]
technicaldescription[0-1]

Figure 3.4 - The concrete view of the DB-MAIN repository for JIDBM.

3.1.5.1 DBMGenericObject
DBMGenericObject contains the generic properties of most of DB-MAIN repository objects. In this
context, the DBMGenericObject class is super-type of most of repository objects (see inheritance view
section 3.1.6). A generic object has fields objectIdentifier (global identifier for the project; automati-

3.1 JIDBM repository architecture 25
cally generated; not updatable), objectType (a number indicating the object type such as entity type,
simple attribute, …; not updatable) and flag (indicators dependent on field objectType). The predefined
constant values of fields objectType and flag are:

Table 3.15 - Constants of the field objectType in the DBMGenericObject class.

Field objectType of DBMGenericObject
Constant Description

DBMGenericObject.CLUSTER Cluster
DBMGenericObject.CO_ATTRIBUTE Compound attribute
DBMGenericObject.COLLECTION Collection
DBMGenericObject.CONNECTION Connection
DBMGenericObject.CONS_PU Processing unit cardinality
DBMGenericObject.CONS_RES Resource cardinality
DBMGenericObject.CONSTRAINT Constraint
DBMGenericObject.CONSUMPTION Consumption
DBMGenericObject.ELEMENT Element
DBMGenericObject.ENTITY_TYPE Entity type
DBMGenericObject.ENVIRONMENT Environment
DBMGenericObject.GROUP Group
DBMGenericObject.MEMBER_CST Constraint member
DBMGenericObject.META_OBJECT Meta-object
DBMGenericObject.META_PROPERTY Meta-property
DBMGenericObject.NN_NOTE Note relation
DBMGenericObject.NOTE Note
DBMGenericObject.PROC_UNIT Processing unit
DBMGenericObject.PROD_SET Product set
DBMGenericObject.RE_ISA Resource subtype
DBMGenericObject.REL_ELEMENT Element relation
DBMGenericObject.REL_TYPE Rel-type
DBMGenericObject.RESOURCE Resource
DBMGenericObject.ROLE Role
DBMGenericObject.SCHEMA Schema
DBMGenericObject.SI_ATTRIBUTE Simple attribute
DBMGenericObject.STATE State
DBMGenericObject.SUB_TYPE Subtype
DBMGenericObject.SYSTEM Project
DBMGenericObject.TEXT Text
DBMGenericObject.TEXT_LINE Text line
DBMGenericObject.USER_OBJECT User object
DBMGenericObject.USER_VIEW User view

Methods is[Type] are defined on class DBMGenericObject to simplify the test on object type.
For example, go.isEntityType() is the same thing as go.getObjectType() ==
DBMGenericObject.ENTITY_TYPE.

Field flag of DBMGenericObject
Constant Description

DBMGenericObject.ALLPARENTS Notes only showed when all owners are shown in graphical views
DBMGenericObject.ETROUND Entity type rectangles with rounded corners in data schema gra-

phical views

Table 3.16 - Constants of the field flag in the DBMGenericObject class.

26 Chapter 3 Class specifications
DBMGenericObject.ETSHADOW Entity type rectangles with shadow in data schema graphical
views

DBMGenericObject.ETSQUARE Entity type rectangles with square corners in data schema graphi-
cal

DBMGenericObject.GRAPHCOUPLE Object movements graphically dependent in product graphical
views

DBMGenericObject.HAVESEL Object with selected objects
DBMGenericObject.HIDEASSOCIATION Associations hidden in use case schema graphical views
DBMGenericObject.HIDEATT Attributes hidden in data schema graphical views
DBMGenericObject.HIDECTRLFLOW Control flows hidden in activity schema graphical views
DBMGenericObject.HIDEEXTEND Extend relationships hidden in use case schema graphical views
DBMGenericObject.HIDEGENACT Actor generalizations hidden in use case schema graphical views
DBMGenericObject.HIDEGENUC Use case generalizations hidden in use case schema graphical

views
DBMGenericObject.HIDEGR Groups hidden in data schema graphical views
DBMGenericObject.HIDEINCLUDE Include relationships hidden in use case schema graphical views
DBMGenericObject.HIDENEWADD New schema and add text processes hidden in project graphical

views
DBMGenericObject.HIDENOTE Notes hidden in product graphical views
DBMGenericObject.HIDEOBJFLOW Object flows hidden in activity schema graphical views
DBMGenericObject.HIDEPRIMID Primary identifiers hidden in data schema graphical views
DBMGenericObject.HIDEPROD Products belonging to product sets hidden in project graphical

views
DBMGenericObject.HIDEPU Processing units hidden in data schema graphical views
DBMGenericObject.HIDESTEREOTYPE Stereotypes hidden in product graphical views
DBMGenericObject.ISASTRAIGHT Is-a relations with square lines in data schema graphical views
DBMGenericObject.LOCK_USED Methodology control used in project
DBMGenericObject.MARK1 Object marked in highlighting plan 1
DBMGenericObject.MARK2 Object marked in highlighting plan 2
DBMGenericObject.MARK3 Object marked in highlighting plan 3
DBMGenericObject.MARK4 Object marked in highlighting plan 4
DBMGenericObject.MARK5 Object marked in highlighting plan 5
DBMGenericObject.METH_USED Methodology used in project
DBMGenericObject.PROCESS_TITLE Process title used in project views
DBMGenericObject.REJECTED Product rejected
DBMGenericObject.RTROUND Rel-type rectangles with rounded corners in data schema graphical

views
DBMGenericObject.RTSHADOW Rel-type hexagons with shadow in data schema graphical views
DBMGenericObject.RTSQUARE Rel-type rectangles with square corners in data schema graphical

views
DBMGenericObject.SELECT Object selected
DBMGenericObject.SHOWTYPEATT Attribute type shown in data schema graphical views
DBMGenericObject.UMLCENTER Name of current role or rel-type shifted towards center in class

diagram graphical view
DBMGenericObject.UMLCENTERDOWN Name of current role or rel-type shifted towards bottom center in

class diagram graphical view
DBMGenericObject.UMLCENTERUP Name of current role or rel-type shifted towards top center in class

diagram graphical view
DBMGenericObject.UMLLEFTCENTER Name of current role or rel-type shifted towards center left in class

diagram graphical view

Table 3.16 - Constants of the field flag in the DBMGenericObject class.

3.1 JIDBM repository architecture 27
A generic object has a collection of states (see section 3.1.4.4), note relations (see section 3.1.5.4) and
user objects (see section 3.1.5.3). It is identified by its object identifier and project.

3.1.5.2 DBMConcreteObject
DBMConcreteObject represents the concrete properties of repository objects that have names and des-
criptions. Since DBMConcreteObject is a subtype of DBMGenericObject, it inherits all the properties
and methods of DBMGenericObject. A concrete object has a name, shortName, semanticDescription
and technicalDescription fields. Note that, for some subtypes, fields shortName, semanticDescription
or technicalDescription are not available. See the previous sections for more details.

3.1.5.3 DBMUserView and DBMUserObject
DBMUserView represents the textual and graphical attributes of some windows (schema, text or pro-
ject) in the DB-MAIN CASE tool. A user view has a name, type, zoom (zoom factor), reduce (reduce
factor), xGrid (x position of grid), yGrid (y position of grid), fontSize (graphical font size), fontName
(graphical font name), textFontSize (textual font size), textFontName (textual font name) and highli-
ghtingPlan fields. The possible values of field type are:

Table 3.17 - Constants of the field type in the DBMUserView class.

Field type of DBMUserView
Constant Description

DBMUserView.COMPACT Compact textual view
DBMUserView.EXTENDED Extended textual view
DBMUserView.GRAPH_COMPACT Compact graphical view
DBMUserView.GRAPH_DEPENDENCY Dependency graphical view
DBMUserView.GRAPH_STANDARD Standard graphical view
DBMUserView.SORTED Sorted textual view
DBMUserView.STANDARD Standard textual view

A user view contains several user objects and belongs to only one user viewable (represented by the
UserViewOwner class). The UserViewOwner class does not exist in the JIDBM library. It is a virtual
class which is a generalization of the parent (schema, text or project) of a user view. A user view is
identified by its name and owner. Note that the JIDBM library does not allow users to manage the struc-
tured histories of DB-MAIN. In this context, only the compact view (DBMUser-
View.GRAPH_COMPACT) of the project is accessible and manageable by the JIDBM library.
DBMUserObject represents the graphical properties of generic objects in a user view. A user object has
fields xPosition, yPosition and color. The positions (xPosition and yPosition) are defined in thousandth
of millimeter (e.g. a xPosition value of 10000 represents 1 centimeter). The concept of user object is
important because some objects can appear in many views (like an entity type that appears in a UML
class diagram and in a UML activity diagram as an external object). A user object is identified by its
generic object and user view.

DBMGenericObject.UMLLEFTDOWN Name of current role or rel-type shifted towards bottom left in
class diagram graphical view

DBMGenericObject.UMLLEFTUP Name of current role or rel-type shifted towards top left in class
diagram graphical view

DBMGenericObject.UMLRIGHTCENTER Name of current role or rel-type shifted towards center right in
class diagram graphical view

DBMGenericObject.UMLRIGHTDOWN Name of current role or rel-type shifted towards bottom right in
class diagram graphical view

DBMGenericObject.UMLRIGHTUP Name of current role or rel-type shifted towards top right in class
diagram graphical view

DBMGenericObject.WITHOUT_SELECT Object without selected object

Table 3.16 - Constants of the field flag in the DBMGenericObject class.

28 Chapter 3 Class specifications
3.1.5.4 DBMNote and DBMNoteRelation
DBMNote represents textual note in schemas and projects. To each element of a schema or project, can
be attached a note. A note has a field description (free text). It is attached to only one generic object,
although, in practice, DB-MAIN only supports notes on the following object types: schema, entity type,
rel-type, simple attribute, compound attribute, role, group, collection, cluster, processing unit, element
relation, environment, consumption, processing unit cardinality, resource cardinality, state, resource,
text, product set.
A note can appear in one or many views (e.g. if it is linked to an entity type that appears in UML class
and activity diagrams). Sometimes the note should be visible in all the views, sometimes not. Moreover,
an object may receive several notes, possibly in a single view or in many views. This complex situation
is managed by the note relation object (represented by the class DBMNoteRelation) which materializes
a ternary rel-type between note, generic object to which the note is attached, and the user view owner in
which view the note should appear. A note relation is identified by its note, generic object, and user
view owner.

3.1.6 The inheritance view
The inheritance view (figure 3.5) is just an overview of all the objects which inherit from the DBMGe-
nericObject class.

P

P

P

P

P

P

DBMUserView DBMUserObject

DBMText

DBMTextLine

DBMSubType

DBMState

DBMSim pleAttribute

DBMSchem a

DBMRole

DBMResource

DBMResourceSubType DBMResourceCardinality

DBMRelationshipType

DBMProject

DBMProduct

DBMProductSet DBMProcess ingUnit

DBMProcess ingUnitCardinality

DBMNote DBMNoteRelation

DBMMetaProperty

DBMMetaObject DBMGroup

DBMGenericObject

DBMEnvironm ent

DBMEntityType

DBMEntityRelationshipType

DBMElem ent

DBMElem entRelation DBMDataObject

DBMConsum ption

DBMConstraint

DBMConstraintMem ber

DBMConnection

DBMConcreteObject

DBMCom poundAttribute

DBMCollection

DBMClus ter

DBMAttribute

Figure 3.5 - The inheritance view of the DB-MAIN repository for JIDBM.

3.2 Special classes
This section talks about special classes of the JIDBM library that are not described in the repository
architecture.

3.2.1 DBMLibrary
DBMLibrary contains the native methods used by the classes describing the repository to access the
C++ repository (dbm_core.dll) of DB-MAIN.

3.2 Special classes 29
For most methods of the JIDBM repository classes, it exists a native method with the same name suf-
fixed by "Of" and the object name on which the method is defined. For example, the DBMAttribute
method "public int getMinimumCardinality()" is translated in DBMLibrary by "public native int getMi-
nimumCardinalityOfAttribute(int id)" where id is the object identifier representing the instance on
which the method is applied.
DBMLibrary also offers four interesting methods:

• executeMenu that launches in DB-MAIN the menu item identified by id (see the JIDBM javadoc
for more information about the menu constants).

• getCurrentSchema and getCurrentDBMSchema that return the current schema in DB-MAIN. get-
CurrentSchema returns an object identifier integer and getCurrentDBMSchema returns an ins-
tance of DBMSchema class.

• getCurrentProject and getCurrentDBMProject that return the current project in DB-MAIN (only
use with loadDBMProject method, see section 2.3.6 for more information). getCurrentProject
returns an object identifier integer and getCurrentDBMProject returns an instance of DBMPro-
ject class.

• loadDBMProject that loads a LUN file in the DB-MAIN repository (see section 2.3.6 for more
information).

• loadDBMProjectFromISL that loads an ISL file in the DB-MAIN repository (see section 2.3.6
for more information).

• loadDBMProjectFromXML that loads an XML file in the DB-MAIN repository (see section
2.3.6 for more information).

• unloadLUN that unloads a project in a LUN file (see section 2.3.6 for more information).
• unloadISL that unloads a project in a ISL file (see section 2.3.6 for more information).
• unloadXML that unloads a project in a XML file (see section 2.3.6 for more information).
• extractSQLFromSchema, extractIdsFromSchema (only for professional license),

extractPl1FromSchema (only for professional license), extractCobolFromSchema (only for pro-
fessional license) and extractImsFromSchema (only for professional license) that extract DDL
files into a schema.

3.2.2 DBMConsole
DBMConsole allow programmers to create a console which traps the "System.out.println" instruction-
sand prints into. The following example creates a console and prints "Hello world!".

// Open a java console in DB-MAIN.
new DBMConsole();
// Print "Hello world!" in the console.
System.out.println("Hello world!");

3.2.3 DBMClassLoader
The class DBMClassLoader contains methods called by DB-MAIN to execute the java plug-ins. This
class allows users to re-execute a modified java program without restarting DB-MAIN.
DB-MAIN does not use the system class loader because all classes loaded through it cannot be unloa-
ded. Using an alternate class loader allows DB-Main users to edit source code of a class, recompile it
and reload into DB-MAIN. To work, the loaded class must be in a different directory than jidbm.jar
package.

3.2.4 DBMVersion
The class DBMVersion gives the DB-MAIN version and the current platform.

30 Chapter 3 Class specifications

Chapter 4

Programming styles

There are two ways of programming with the JIDBM library:
• The classic style that uses the JIDBM repository classes. The examples in sections 2.3.6, 5.1.2

and 5.2.2 use this style.
• The library style that directly uses the method of DBMLibrary class. The example below transla-

tes the classic example in section 2.3.6 into library style.

class Sample {
 public static void runDBM() throws IOException {
 // loading the project:
 DBMLibrary lib = new DBMLibrary();
 p = library.getObjectIdentifierOfGenericObject(0);
 if (p >= 0) {
 int s = lib.getFirstSchemaOfProject(p);
 if (s >= 0) {
 // analyzing the schema …
 s = lib.getNextSchemaOfProject(p,s);
 }
 }
 }
}

The library style programming can be more efficient than classic programming. In programs using the
JIDBM repository classes, each class instantiation requires a few DB-MAIN repository accesses (to fill
local and super-type fields) even when only one information is necessary. On big schemas, the response
time must be slightly improved with the library programming.
The classic style is more ergonomic for programmers. It uses all the concepts (e.g. inheritance) which
contributed to the success of the object programming.
Except for programs that requires innumerable repository accesses, we advice programmers to use the
classic programming style that ensures efficient, readable and upgradable programs.

Chapter 5

Examples

5.1 Statistic generator
5.1.1 Description
The program displays some statistics on the current data schema:

• the number of entity types,
• the number of relationship types,
• the number of attributes,
• the maximal number of attributes by entity type.

5.1.2 Java code
import java.io.IOException;
import com.dbmain.jidbm.*;

public class StatisticGenerator {

 static int na_max;

 public static void runDBM() throws IOException {
 new DBMConsole();
 DBMLibrary lib = new DBMLibrary();
 if (lib.getCurrentSchema() >= 0) {
 DBMSchema sch = new DBMSchema(lib.getCurrentSchema());
 int ne = 0;
 int na = 0;
 int nr = 0;
 na_max = 0;
 DBMDataObject d = sch.getFirstDataObject();
 while (d != null) {
 switch (d.getObjectType()) {
 case DBMGenericObject.ENTITY_TYPE:
 ne = ne+1;
 setAttributeMaximum((DBMEntityRelationshipType)d);
 break;
 case DBMGenericObject.REL_TYPE:
 nr = nr + 1;
 break;
 case DBMGenericObject.SI_ATTRIBUTE:

34 Chapter 5 Examples
 case DBMGenericObject.CO_ATTRIBUTE:
 na = na + 1;
 break;
 }
 d = sch.getNextDataObject(d);
 }
 System.out.println("\nSTATISTICS:"+"\n-----------\n"+
 "#Entity types:\t"+ne+"\n#Rel-types:\t"+nr+
 "\n#Attributes:\t"+na+
 "\nMax attributes per entity: "+na_max+"\n");
 }
 else {
 System.out.println("\nNo selected schema!\n");
 }
 System.out.println("\nEnd...\n");
 }

 public static void setAttributeMaximum(DBMEntityRelationshipType e) {
 int max_at = 0;
 DBMAttribute a = e.getFirstAttribute();
 while (a != null) {
 max_at = max_at + 1;
 a = e.getNextAttribute(a);
 }
 if (max_at > na_max) {
 na_max = max_at;
 }
 }
}

5.2 Schema creator
5.2.1 Description
The program creates a schema "Order" into a project loaded or created with DB-MAIN. This concep-
tual schema contains structures to manage customers, orders and products.
Note that the JIDBM library does not allow users to manage the structured histories of DB-MAIN. In
this context, the created schema is only visible in the compact view of the project (menu View/Graph.
compact). To create a schema in the project standard view, it must be created with DB-MAIN (menu
New/Schema).

5.2.2 Java code
import java.io.IOException;
import java.util.*;
import java.text.*;
import com.dbmain.jidbm.*;

public class SchemaCreator {

 public static void runDBM() throws IOException {
 new DBMConsole();
 DBMLibrary lib = new DBMLibrary();
 DBMProject pro = new DBMProject();
 if (pro != null) {
 String sd = "20051214";
 SimpleDateFormat df = new SimpleDateFormat("yyyyMMdd");
 Date d;
 try {
 d = df.parse(sd);
 } catch (Exception ex) {
 d = null;
 }
 DBMSchema sch = pro.createSchema("Order","Ord","Conceptual",d,d,

5.2 Schema creator 35
 DBMSchema.ERASCHEMA,null);
 DBMUserView uv = sch.createUserView("",DBMUserView.GRAPH_STANDARD,
 (short)100,(short)100,0,0,
 (short)0,"",(short)0,"",
 (int)DBMGenericObject.MARK1,null);
 DBMEntityType cus = createCustomer(sch);
 DBMUserObject uo = uv.createUserObject(50000,50000,0,cus);
 DBMEntityType ord = createOrder(sch);
 uo = uv.createUserObject(100000,50000,0,ord);
 DBMEntityType prod = createProduct(sch);
 uo = uv.createUserObject(100000,100000,0,prod);
 DBMRelationshipType rel = sch.createRelationshipType("place","pla");
 DBMNote note = rel.createNote("A customer places orders\nto the "+
 "company.",sch);
 uo = uv.createUserObject(75000,20000,0,note);
 DBMRole rol = rel.createRole("",0,DBMRole.N_CARD,' ');
 rol.addFirstEntityType(cus);
 rol = rel.createRole("",1,1,' ');
 rol.addFirstEntityType(ord);
 rel = sch.createRelationshipType("detail","det");
 note = rel.createNote("A detail gives the ordered\nquantity "+
 "of a product.",sch);
 uo = uv.createUserObject(150000,75000,0,note);
 rel.createSimpleAttribute("Quantity","Qu",1,1,' ',
 DBMSimpleAttribute.NUM_ATT,false,true,
 15,(short)2,sch,null);
 rol = rel.createRole("",0,DBMRole.N_CARD,' ');
 rol.addFirstEntityType(ord);
 rol = rel.createRole("",0,DBMRole.N_CARD,' ');
 rol.addFirstEntityType(prod);
 }
 else {
 System.out.println("\nNo loaded project!\n");
 }
 System.out.println("\nEnd...\n");
 }

 public static DBMEntityType createCustomer(DBMSchema sch) {
 DBMEntityType ent = sch.createEntityType("CUSTOMER","CUS");
 DBMSimpleAttribute id = ent.createSimpleAttribute("Ncus","Nc",1,1,' ',
 DBMSimpleAttribute.NUM_ATT,
 false,true,6,(short)0,sch,
 null);
 DBMSimpleAttribute si = ent.createSimpleAttribute("Name","Na",1,1,' ',
 DBMSimpleAttribute.VARCHAR_ATT,
 false,true,30,(short)0,sch,id);
 DBMCompoundAttribute co = ent.createCompoundAttribute("Address","Add",1,1,
 ' ',sch,null);
 ent.addNextAttribute(co,si);
 si = ent.createSimpleAttribute("Phone","Pho",1,5,DBMAttribute.SET_ATT,
 DBMSimpleAttribute.VARCHAR_ATT,false,true,15,
 (short)0,sch,null);
 ent.addNextAttribute(si,co);
 si = ent.createSimpleAttribute("Category","Cat",1,1,' ',
 DBMSimpleAttribute.VARCHAR_ATT,false,true,5,
 (short)0,sch,si);
 si = ent.createSimpleAttribute("Account","Acc",1,1,' ',
 DBMSimpleAttribute.VARCHAR_ATT,false,true,20,
 (short)0,sch,si);
 si = co.createSimpleAttribute("Street","Str",1,1,' ',
 DBMSimpleAttribute.VARCHAR_ATT,false,true,30,
 (short)0,sch,null);
 si = co.createSimpleAttribute("Zip-code","Zip",1,1,' ',
 DBMSimpleAttribute.NUM_ATT,false,true,10,

36 Chapter 5 Examples
 (short)0,sch,si);
 si = co.createSimpleAttribute("City","Cit",1,1,' ',
 DBMSimpleAttribute.VARCHAR_ATT,false,true,30,
 (short)0,sch,si);
 DBMGroup gr = ent.createGroup("IDCUS",DBMGroup.ASS_GROUP,DBMGroup.PRIM_GR,0,
 1,null);
 gr.addFirstComponent(id);
 return ent;
 }

 public static DBMEntityType createOrder(DBMSchema sch) {
 DBMEntityType ent = sch.createEntityType("ORDER","");
 DBMSimpleAttribute id = ent.createSimpleAttribute("Nord","No",1,1,' ',
 DBMSimpleAttribute.NUM_ATT,
 false,true,6,(short)0,sch,
 null);
 DBMSimpleAttribute si = ent.createSimpleAttribute("Date","Da",1,1,' ',
 DBMSimpleAttribute.DATE_ATT,
 false,true,15,(short)0,sch,
 id);
 DBMGroup gr = ent.createGroup("IDORD",DBMGroup.ASS_GROUP,DBMGroup.PRIM_GR,0,
 1,null);
 gr.addFirstComponent(id);
 return ent;
 }

 public static DBMEntityType createProduct(DBMSchema sch) {
 DBMEntityType ent = sch.createEntityType("PRODUCT","");
 DBMSimpleAttribute id = ent.createSimpleAttribute("Npro","Np",1,1,' ',
 DBMSimpleAttribute.NUM_ATT,
 false,true,6,(short)0,sch,
 null);
 DBMSimpleAttribute si = ent.createSimpleAttribute("Label","Lab",1,1,' ',
 DBMSimpleAttribute.VARCHAR_ATT,
 false,true,30,(short)0,sch,id);
 si = ent.createSimpleAttribute("Price","Pri",1,1,' ',
 DBMSimpleAttribute.NUM_ATT,false,true,15,
 (short)2,sch,si);
 si = ent.createSimpleAttribute("Stock","Sto",1,1,' ',
 DBMSimpleAttribute.NUM_ATT,false,true,15,
 (short)2,sch,si);
 DBMGroup gr = ent.createGroup("IDPRO",DBMGroup.ASS_GROUP,DBMGroup.PRIM_GR,0,
 1,null);
 gr.addFirstComponent(id);
 return ent;
 }

}

	Contents
	List of Figures
	List of Tables
	Chapter 1 Warnings
	Chapter 2 Introduction
	2.1 JIDBM
	2.2 Architecture
	2.3 JIDBM principles
	2.3.1 Getting started
	2.3.1.1 Windows
	2.3.1.2 Linux
	2.3.1.3 Mac

	2.3.2 Classpath
	2.3.3 Jar library
	2.3.4 Plug-in entry point
	2.3.5 Debugging
	2.3.6 A simple example
	2.3.6.1 Loading a project
	2.3.6.2 Creating a DBMProject
	2.3.6.3 Multiple project management
	2.3.6.4 Retrieving schemas from the current project

	Chapter 3 Class specifications
	3.1 JIDBM repository architecture
	3.1.1 Naming conventions
	3.1.1.1 Class naming
	3.1.1.2 Field naming
	3.1.1.3 Method naming

	3.1.2 The project view
	3.1.2.1 DBMProject
	3.1.2.2 DBMMetaObject and DBMMetaProperty
	3.1.2.3 DBMProduct and DBMConnection
	3.1.2.4 DBMText and DBMTextLine
	3.1.2.5 DBMSchema
	3.1.2.6 DBMProductSet

	3.1.3 The data view
	3.1.3.1 DBMSchema
	3.1.3.2 DBMCollection
	3.1.3.3 DBMDataObject
	3.1.3.4 DBMEntityRelationshipType
	3.1.3.5 DBMEntityType, DBMCluster and DBMSubType
	3.1.3.6 DBMRelationshipType and DBMRole
	3.1.3.7 DBMAttribute
	3.1.3.8 DBMSimpleAttribute
	3.1.3.9 DBMCompoundAttribute
	3.1.3.10 DBMProcessingUnit
	3.1.3.11 DBMGroup, DBMConstraint and DBMConstraintMember
	3.1.3.12 DBMAttributeOwner
	3.1.3.13 DBMProcessingUnitOwner

	3.1.4 The process view
	3.1.4.1 DBMSchema
	3.1.4.2 DBMDataObject
	3.1.4.3 DBMProcessingUnit
	3.1.4.4 DBMState
	3.1.4.5 DBMElement and DBMElementRelation
	3.1.4.6 DBMEnvironment
	3.1.4.7 DBMResource and DBMResourceSubType
	3.1.4.8 DBMConsumption, DBMProcessingUnitCardinality and DBMResourceCardinality

	3.1.5 The concrete view
	3.1.5.1 DBMGenericObject
	3.1.5.2 DBMConcreteObject
	3.1.5.3 DBMUserView and DBMUserObject
	3.1.5.4 DBMNote and DBMNoteRelation

	3.1.6 The inheritance view

	3.2 Special classes
	3.2.1 DBMLibrary
	3.2.2 DBMConsole
	3.2.3 DBMClassLoader
	3.2.4 DBMVersion

	Chapter 4 Programming styles
	Chapter 5 Examples
	5.1 Statistic generator
	5.1.1 Description
	5.1.2 Java code

	5.2 Schema creator
	5.2.1 Description
	5.2.2 Java code

