DB-Main Manual Series

DEMONSTRATION OF THE DB-MAIN
METHODOLOGICAL ENGINE

wITH DB-MAIN 6.5 - MARCH 2002

DIDIER ROLAND

€S ho

%%
>

7/ g
% b7 3¢ 090

@C\\\xés UNIVeR,,

4,

Mg

The University of Namur - LIBD

2 1. Introduction

1. Introduction

This paper isa*“learning by example” demonstration of how to perform the design of asimple database.
Thisdesign will be carried out step by step. This method, shown in appendix A, is defined by a method
engineer, using the MDL language [ROLAND,02].

The small case study concerns alibrary. It contains books that can be borrowed. The database is aimed
at registering all books of the library, al the borrowers and their borrowings. Its complete definition is
given in appendix B, its conceptual schemain appendix C. During the demonstration, we will transform
this schemain arelational schema and generate an SQL DDL script.

2. How to read this paper

» Bold charactersare used to show menu entries to select, or static text in dialogue boxes.
» [talicsis used to show what has to be typed by the user.
» [...] showsahbutton to push.

« “.." showsagraphical object (process type, process, product) that can be found in a window, or a
file name.

» Inthe drawings, four colour schemes are used to draw rectangles for representing their state. These
schemes can be changed in DB-MAIN through the menu entry File/Configuration... and the
"Method" category, as shown in Figure 2.1. The four schemes are:

» grey border and white background for unused process types
» black border and white background for used process types

» green border and white background in DB-MAIN, changed to ligth gray border and background
in this paper, for allowed process types

 red border and white background, changed to dark gray border and background in this paper, for
executing process types.

DB-MAIN Configuration i

Code generators
DOL extractars

Eu:ulu:uur fu:-r useu:l pn:u:ess t_l,lpes [F| B B]

Default directories Colour for allowed process types [R.G.B]
[nter-groups constraints Colour for the tepes of the curently executing processes (R
Loggin Fairt background for unused process ppes
Ih Pairt I:uau:kgru:uund for uzed process types |
| o T ' S i = il 4Owes i | B LR Colag 1Y Er

Feport generators
Schema analysiz
Test analyziz
Transfarmations

Ilzer-defined menu 170170170 Colar
Wiew settings I _I
Change I Cloze I Help |

Figure 2.1 - The DB-MAIN configuration dialogue box for changing the colours used to draw the method.

3. Demonstration 3

3. Demonstration

The DB-MAIN CASE todl is started, its workspace is blank. We will create a new project.

Menu File/New project
Name: Library
Short name: lib
Methodology: forward.lum (content in appendix A) (also selectable by pushing [Browse])
[OK]

The project is created, the project window is opened, and, on top of it, another window containing the
method that we will follow (see first figure in appendix A.2). The method is displayed in a graphical
way. Rectangles are process types, i.e. the definition of the processes to perform. Ellipses are product
types, i.e. the definition of the products to generate: al the schemas at every step and the SQL-DDL
script. Bold arrows show the control flow, and the thin arrows show the data flow.

Execute “New” (in the method window, click on the “New” process type (allowed colour) with the
mouse right button; a contextual menu appears, select Execute).

Select thefile“library.txt” (content in appendix B).

Change version number to “IR”

[OK]

In the project window (see figure 3.1), we can see that the “New text” process has been created, as well
asthe “library.txt” text have been added to the history. An arrow shows that the text is the output of the
process.

) DB-MAIN 6.5 - Library Hi=] E3

File Edit Product Mew Transform Aszsist Engneenng Log Miew Window Help
B4 Method Forward engineering Llhraﬂr,'Hfﬂ:yﬂE.T*"EE'lg

Forward engineeting

7

HEW

(Intewiew tep n:nrt_)

w

Conceptiaal analysis

(_Cnnceptual schema_‘] i -
Fo [2 Wil

| | Size: 37

o

Figure 3.1 - The analyst can choose between two process types

In the method window, the “New” process type is still allowed, and a second one, “ Conceptual analy-
sis’, isallowed too. It means that the analyst can choose either to add as many interview reports as he or
she wants to the project or proceed with the conceptual analysis of these reports. It is to be noticed that,
during the execution of the “New text” process, the “New” process type was in the executing colour to
show that a process of that typeisin progress.

4 3. Demonstration

In our example, we will do with our single text and go on with its analysis.

Execute “ Conceptual analysis’.
[OK]

The content of the method window is changed. It shows the strategy of the “Conceptual analysis’ pro-
cess type (figure 3.2). The project window has changed in the same way: a“ Conceptual analysis’ engi-
neering process has been created, and the window shows it. By opening the process hierarchy window
(menu Window/Pr ocess hierar chy), we can see that “ Conceptual analysis’ isasub-process of Library.
We can use the hierarchy window to browse through the history

) DB-MAIN 6.5 - Library =] E3
Eile Edit Product Mew Tranzsform Aszist Engineernng Log Miew Window Help

i Method Foiward engineering O] x]

F S
s —

Library/Conceptual analpsiz. 14/03. . =]

— Interview te Conceptual analysis

Conceptual analysis
A Conceptual
]
? library tat/IR
NEW
(Cu:unceptual schema_) 5 Eibiai
Mew test o
i Conceptual analysiz
(Intervie}l;/ repu:urt_)
o - -
J4 [7] T I— M
| tiles windows on the deskiop | Size: 34

Figure 3.2 - Beginning the conceptual analysis

We can now perform the conceptual analysis by first creating a new schema that will be used as the
drawing board.

Execute “New”.
Name: Library
Short name: lib
Version: Conceptual
[OK]

On this drawing board, we will now introduce the conceptual schema of our library management sys-
tem during the analysis process.

Execute “Analysis’.
[OK]

“Analysis’ isaprimitive process that must be performed by the analyst using atoolbox. By double clic-
king on the“Analysis’ process type in the method window, we can see which tools are available in this
toolbox (figure 3.3). They alow the analyst to create and edit entity types, relationship types, attributes,
roles and groups in the schema. So, now, the analyst will have to open the blank schema and fill it by
creating the conceptual schema of the database by its own. When he or she finishes the job, he or she
will signal it to the methodological engine

3. Demonstration 5

Toolbox | x| !

Mame Im

Todlz | create-entity-type -
create-rel-type
create-attrbute
create-group
=l

create-role
raadifp-entity-type
modifp-rel-ype
rodify-attibute

Thiz toolbox allows wvou to draw a conceptual schema. Y'ou can create and edit
entity tipes, relationship tupes, attributes, roles and integrity constraints.

E
gt

Figure 3.3 - The analysis toolbox

Open the “Library/conceptual” schema.

Enter the conceptual schema shown in appendix 3.

Close the schema.

In the project window, select the “ Analysis’ process.

Menu Engineering/End use of primitives.

Terminate “Analysis’ (in the method window, click on the “Analysis’ process type (in executing
colour) with the mouse right button; a contextual menu appears, select Ter minate).

Thefirst conceptual schema being introduced, it can be normalised. To know what it means, just double
click on the “Conceptual normalisation” process type in the method window and read its description.

Execute “Conceptual normalisation”.
[OK]
Open the “Library/Conceptual” schema.
We can see that this simple schemais already normalised, so we can immediately close the window.
Select “ Conceptual normalisation” in the project window.
Menu Engineering/End use of primitives.
Terminate “ Conceptua normalisation”

The conceptual analysis is finished (see figure 3.4). The CASE tool automatically terminates it: the
CASE tool automatically performs the same action as the user could perform by selecting the menu
entry Engineering/End current process with nothing selected in the project window. A dialogue box
appears to alow the user to select output products, as shown in figure 3.5. Since the process type speci-
fies there should be conceptual schema(s) in output, and since we have only one schemain our project,
this schema is proposed in output. We accept this choice and we terminate the use of conceptual analy-
Sis process type::

[OK]
Terminate “ Conceptual analysis’.

Both the project and the method windows are back to their first view, the one before we began the
“Conceptual analysis’ process. In the method window, only the “Logical design” processtypeisnow in
the state allowed (figure 3.6).

3. Demonstration

) DB-MAIN 6.5 - Library

File Edit Product MNew Transform Assist

Engineerng Log Wiew ‘Window Help

=] E3

i Method Foiward engineering O] x]
el
WEW
(Cu:unceptual schema_)

(Intervieﬁf tep u:urt_)

Anialyais

X
Conceptual normalisation

J4 [:

2l

Library/Conceptual analpsiz. 14/03. . =]
Conceptual analysis ==

| Conceptual normalization |

N I AP

o

| Size: 1139

Figure 3.4 - The conceptual analysisis finished

End engineerning process [7] x| I

M arne

Cutput

Librany/Conceptual

Ok

£S04 |
Frk |

Candidates

Cancel |

Figure 3.5 - The output product selection dialogue box.

Execute “Logical design”.
[OK]

Execute “ Copy”.
Version: First logical
[OK]

Execute “ Relational design”.
[OK]

3. Demonstration

) DB-MAIN 6.5 - Library

File Edit Product MNew Transform Assist

Engineerng Log Wiew ‘Window Help

i Method Forward engineering

NEW

(Intewiew tep u:urt_)

L
Conceptual analysis

!

(C oficepiual schema_)

w

Logical design

\

f. [

el
{sa]
Conceptual analysis
ihraty/Conceptus
2 7 1 h—

o

i

| zaves the current project as a * lun file [ar *.izl file, without the method and the kiste |

Figure 3.6 -

Ready for logical design

The following process types are primitive process types. The “New” and “Copy” process types we
already met are also primitive process types, but built-in process types: the CASE tool knows by itself
what to do. The “Analysis’ process type met during the conceptual analysis was an analyst-driven pri-
mitive process type. The following ones are of athird kind: they are method-driven primitive process
types. By double-clicking on them in the method window, one can see a script of transformations that
were specified by the method engineer and that will be executed automatically by the CASE tool.

Execute “Is-arelations’.
[OK]
Execute “Non-functional rel-types’.
[OK]
Execute “ Attributes’.
[OK]
Execute “ | dentifiers’.
[OK]
Execute “ References’
[OK]

Relational design isover (figure 3.7) and the Engineering/End current process function is executed.

[OK]
Terminate “Relational design”.

We can go on with the logical design by keeping a copy of the current state of the schema and transfor-
ming all the names in order for them to be compliant with the SQL standard.

3. Demonstration

) DB-MAIN 6.5 - Library =] E3
Eile Edit Product Mew Tranzsform Aszist Engineernng Log Miew Window Help
B Librarp/Logical design/Relational ... =] B3
[
— o 2 -
o Mon-functional
(Rel&til:unal logical schema ihraty/First logics o
; =N
A [
Is-arelations
*
Hon-functional rel%y]jfe,é
L7/
Attributes
I ."l - w
1 47 T — M
| moves zelected objects vertically o they are spaced evenly within the rectangle fo | Size: 275

Figure 3.7 - End of relational design

Execute “ Copy”.
Version: Logical
[OK]
Execute “Name conversion”.
[OK]
Open “Library/logical”.
Menu Transform/Name processing. (see figure 3.8)
[lower -> uppercase]
[OK]
Close the schema
Select “Name conversion” in the project window
Menu Engineering/End use of primitives.
Terminate “Name conversion”.

The logical design is over (figure 3.9) and the CASE tool automatically terminates it: the schema
“Library/Logical” is proposed in output, and the schema “Library/First logical” is put in the
“candidates’ list, that isto say it is not proposed in output, but the user can decide to use it in output
anyway. We simply accept the proposed solution.

[OK]
Terminate “Logical design”.
The same way, we can perform the physical design of our database.
Execute “Physical design”.
[OK]
Execute “ Copy”.
Version: Physical
[OK]

3. Demonstration

Hame Processing Ed I

£ Global [V Mames [V Collections W Processing units
" Selected ¥ Shotnames W Entity types ™ Roles
" Marked ¥ Feltypez | Groups

¥ attributes
Patterns ; Add Inzert | Lielete I
II_II _} mnon T

i~ lower->uppercase i~ Capitalize

[T Remove accents [~ Sharten ba characters

[Confirm Ok I Ear‘u:ell Help | Load | Save |

Figure 3.8 - Name processing

) DB-MAIM 6.5 - Library =] E3

Eile Edit Product Mew Tranzsform Aszist Engineernng Log Miew Window Help
Library/Logical dezign,15/03/02.1... =]

i Method Foiward engineering O] x]

\ it
(Raw logical schema_) bragConcenlis
]
) f/)/ ¥ A
Schema copy

Eelational de si@u—*

]

M
4 Relational desi

Logical schetma

S
Schema copy

h
| Hatme conwersion |

[={ Mathe cotrrersion

o

A i/ S M .

| zaves the current project as a * lun file [ar *.izl file, without the method and the kiste | Size: 401

Figure 3.9 - End of logical design

A method engineer-driven primitive process will create indexes automatically where they are probably
the most useful.

Execute “ Setting indexes”.
[OK]

10

3. Demonstration

A user-driven primitive process alows the database engineer to manually specify the database files to
create and to distribute the tables among those files.

Execut
[OK]

e “ Storage allocation”.

Open schema“ Library/Physical”.

Create

two collections and fill them:

- LIBRARY (AUTHOR,BOOK,COPY ,KEY WORD,REFERENCE,WRITTEN)
- BORROWING(BORROWER,BORROWING,CLOSED BORROWING,PHONE,PROJECT)
Close the schema.
Select “ Storage allocation” in the project window.
Menu Engineering/End use of primitives.

Terminate “ Storage allocation”.

The physical design is over (see figure 3.10) and terminated automatically by the CASE tool with
“Library/Physical” as proposed output product.

) DB-MAIN 6.5 - Library Hi=] E3

File Edit

Product Mew Tranzform Asgsist

Engneenng Log Miew Window Help

e e Il B Librar/Physical design.15/03/02. .. [Si[=]
-
-~ =]
Logical schetna
]
Library/Togical
chema co
(Ph}rsical schema_) Py @l
I g e —
L . i)
Setting indexes hra.'rj.r.-"Physmal
| /
Storage allocation
L [s = 7
| | Size : 550
Figure 3.10 - End of physical design
[OK]

Terminate “Physical design”.
And finally the coding step will generate the SQL-DDL script.

Execu

te “Coding”.

[OK]

Execu

te “Copy”.

Version: Implemented
[OK]

Execute “ Setting coding parameters’.

[OK]
Open the schema.

3. Demonstration 11

The technical descriptions can be modified by introducing some coding parameters. They will be inter-
preted by the SQL generator. For instance, the technical description could specify, for each access key,
if it must be implemented with a b-tree, or with hashing.

We will not bother with these optimisations in this small case study.

Close the schema.

Select “ Setting coding parameters’ in the project window.
Menu Engineering/End use of primitives.

Terminate “ Setting coding parameters’.

Finally, the SQL generator can be invoked.

Execute “ Generate”.
File Name: LIBRARY.DDL
[Save]

The CASE tool automatically terminates the “Coding” process with “library.dll/1” asthe proposed out-
put product.
[OK]
Terminate “ Coding”.
Both the coding (figure 3.11) and the project (figure 3.12) are terminated.

) DB-MAIN 6.5 - Library =] E3
Eile Edit Product Mew Tranzsform Aszist Engineernng Log Miew Window Help
i Method Foiward engineering O] x]

(Ph},rsical schema_) = =

COPY

(Ph;rsical schema_) J
I

w /

Setting coding par ets

v

GENERATE

S~

(SQL database definition =

X [ﬂﬂ HI— M

| | Size: 703

]
= H= Setting coding pa

Figure 3.11 - End of coding

12 4. Bibliography

) DB-MAIN 6.5 - Library
Eile Edit Product Mew Tranzsform Aszist Engineernng Log Miew Window Help
5 Method Forward engineering O] x]

—

Logical schema - g
LibraryfLogical

k2
| Physical design |

(Ph}.rsical schema_)
Coding J

(SQL database definition scti
&
f. [M

| | Size: 703

Figure 3.12 - End of the project

4. Bibliography

[ROLAND,02] D. Roland, MDL Programmer’s Guide, technical report, FUNDP, Institut
d’ informatique, http://www.db-main.be 2002.

Appendix A. The method

13

Appendix A. The method

t ext - model TEXT_FI LE
title "Text file"
description
A text file contains sone free text. In this nmethod, we will use them
to store reports witten in natural |anguage.
end- descri ption
extensions "TXT"
end- nodel

t ext - nmodel SQ._FI LE
title "SQ file"
description
An SQL script containing SQ instructions for the creation of
a dat abase including create database, create table, create index,
alter table with checks, create trigger,...
end- descri ption
extensions "SQ.", "DDL"
end- nodel

schema- nodel PHYS_SQL_SCHEMA
title "SQ schena nodel "
description
The SQ schenma nodel maps the generic entity/object-relationship (GER) nodel
of DB-MAIN to an SQ relational nodel, including physical characteristics
such as the setting of indexes and the definition of dataspaces.

This is the schema nodel from which database creation scripts can be derived.

This is the schema can be used as a reference for the database adm nistrator
to fine tune the database.
end- descri ption

concepts
collection "tabl e space"
schema "vi ew'
entity_type "tabl e"
atom c_attribute "col um"
user _constraint "constraint"
identifier "uni que constraint”
primary_identifier "primary key"
access_key "i ndex"
constraints
ET_per _SCHEMA (1 N) % At list one table required
di agnosi s "Schema &NAME shoul d have a table"
RT_per _SCHEMA (0 0) % No rel -type all owned
di agnosi s "Rel -type &NAME shoul d not exist”
ATT _per _ET (1 N) % At | east one colum per table
di agnosi s "Tabl e &NAME shoul d have at | east one col um®"
PI D _per _ET (0 1) % At nost one primary key per table

di agnosi s "Tabl e &NAME has too nuch prinmary keys"
SUB_TYPES per _ISA (0 0) %Ils-a relations are not allowed
di agnosis "lIs-a relations are not all owed and &NAME has a sub-type"
| D_NOT_KEY_per _ET (0 0) % Every uni que constraint is an index
di agnosi s "Uni que constrai nt &AME shoul d be an i ndex"
OPT_ATT_per _EPID (0 0) % Optional columms not allowed in primary keys.
di agnosi s "There shoul d be no optional colum in primry key &NAME. "
DEPTH_ of _ATT (1 1) and MAX_CARD of _ATT (1 1)
% Col ums are atoni c and singl e-val ued

14 Appendix A. The method

di agnosi s "Col utm &NAME shoul d be atomi ¢ and singl e-val ued. "
ALL_CHARS in_LI ST_NAMES (ABCDEFGHI JKLMNOPQRSTUWWKYZabcdef ghi j kI mopqgr st uvwxyz
0123456789%_)
and NONE_i n_LI ST_NAMES (_$, $3)
and LENGTH of _NAMES (0 31)
di agnosi s "The nanme &NAME is invalid"
end- nodel

schenma- nodel LOG_SQL_SCHENMA

title "Logical relational schem"

description
The | ogi cal relational schema nodel maps the generic entity/object-relationship
(CER) npdel of DB-MAIN to a generic relational nodel, w thout any specific RDBVS
in mnd. Schemas conpliant with this nodel are the one to give as a reference to
peopl e who need to wite queries on the database.

end- descri ption

concepts
schema "vi ew'
entity_type "tabl e"
atom c_attribute "col um"
user _constraint "constraint"
identifier "uni que constraint"

primary_identifier "primary key"
constraints

ET_per_SCHEMA (1 N) % At |ist one table required
di agnosi s "Schema &NAME shoul d have a table”
RT_per _SCHEMA (0 0) % No rel -type all owed

di agnosi s "Rel -type &NAME shoul d not exist"
COLL_per _SCHEMA (0 0) % No coll ection/table space all owed
di agnosi s "The schema shoul d have no tabl e space"
ATT _per_ET (1 N) % At | east one colum per table
di agnosi s "Tabl e &NAMVE shoul d have at | east one col um"
PI D _per _ET (0 1) % At nost one primary key per ET
di agnosi s "Tabl e &NAME has too nmany prinary keys"
KEY_per _ET (0 0) % No access keys/indexes
di agnosi s "Tabl e &NAME shoul d not have an index"
SUB_TYPES per _ISA (0 0) %Ils-a relations are not allowed
di agnosis "lIs-a relations are not allowed and &NAME has a sub-type"
OPT_ATT_per _EPID (0 0) % Optional columms not allowed in primary keys.
di agnosi s "There shoul d be no optional colum in primry key &NAME. "
DEPTH_ of _ATT (1 1) and MAX_CARD of _ATT (1 1)
% Col utms are atom ¢ and singl e-val ued
di agnosi s "Col utm &NAME shoul d be atom ¢ and singl e-val ued. "
end- nodel

schemnma- nodel CONCEPT _SCHEMA
title "Conceptual scherma nodel "
description
The conceptual schena nodel allows an analyst to draw a representation of the
real world. A schema conpliant with that nodel shows precisely, in a readable
way, the semantics of the database. It cannot be directly inplenented. Its main
purpose is to be a basis for docunenting the database, to be a support for

di al ogue.

end- descri ption

concepts
schema "schema"
entity_type "entity type"
rel _type "rel ationship type"
atom c_attribute "attribute"
conpound_attribute "compound attri bute”
role "rol e"
group "group"
user _constraint "constraint"

constraints

Appendix A. The method 15

ET_per_SCHEMA (1 N) % At |ist one ET required

di agnosi s "Schema &NAME shoul d have an entity type"
COLL_per _SCHEMA (0 0) % No col |l ection all owed

di agnosi s "The schema shoul d have no collection"
ATT _per _ET (1 N) % At | east one attribute per ET

di agnosis "Entity type &NAME shoul d have at |east one attribute”
KEY_per _ET (0 0) % No access keys

di agnosis "Entity type &NAME shoul d not have an access key"
REF_per _ET (0 0) % No foreign key

di agnosis "Entity type &NAME shoul d not have a foreign key"
ID per_ET (1 N % If there are identifiers, one of themis primary

and PID per_ET (1 1)
or 1D _per_ET (0 0)
di agnosis "One of the identifiers of entity type &NAME shoul d be primary"
EMBEDDED | D _per _ET (0 0) % Enbedded identifiers are not all owed"
di agnosi s "Enbedded identifiers should be removed in entity type &NAVE"
I D DI FF_i n_ET (components) % All identifiers must have different components
di agnosis "ldentifiers made of the sanme conponents shoul d be avoi ded in &NAMVE"
TOTAL_i n_I SA (no) % Total is-a relations should concern at | east
or TOTAL_in_I SA (yes) % two subtypes
and SUB_TYPES per_ISA (2 N)
di agnosis "Total is-a relations are not allowed with only one sub-type"
DI SJO NT_i n_I SA (no) % Di sjoint is-a relations should concern at |east
or TOTAL_in_I SA (yes) % two subtypes
and SUB_TYPES per_ISA (2 N)
diagnosis "Disjoint is-a relations are not allowed with only one sub-type"
ROLE _per _RT (2 2) %2 <= degree of arel-type <=4
or ROLE per_RT (3 4) %if 3 or 4, the rel-type cannot have a one role
and ATT_per _RT (1 N) % or it nust also have attributes
or ROLE_per_RT (3 4)
and ATT_per_RT (0 0)
and ONE_ROLE per_RT (0 0)
di agnosis "Rel -type &NAME has too nany roles, or too few attributes"
ID per_RT (1 N) % | f RT have some identifiers, one of themis primary
and PID per _RT (1 1)
or 1D _per_RT (0 0)
di agnosis "One of the identifiers of rel-type &AME should be prinmary"
EMBEDDED | D _per _RT (0 0) % Enbedded identifiers are not all owed"
di agnosi s "Enbedded identifiers should be renoved in rel-type &NAME"
ID DI FF_i n_RT (conponents) % Al identifiers nust have different conponents
di agnosis "ldentifiers made of the same conponents shoul d be avoi ded in &NAVE"
not SUB_ATT_per ATT (1 1) % Conpound attribute nust have at |east two conponents
di agnosi s "Conpound attribute &NAME has too few sub-attributes”
| D_per_ATT (0 0) % A compound attribute cannot have an identifier
di agnosi s "Mil ti-val ued conpound attri bute &AME shoul d not have an identifier"
COVP_per _GROUP (1 N) % Every group nust have at |east one component
di agnosi s "G oup &NAME shoul d have conponents”
ROLE_per _EID (0 0) % An ET identifier cannot be made of a single role
and COWP_per_EID (1 N
or ROLE per _EID (1 N
and COWP_per_EID (2 N
di agnosi s "ET ldentifier &AME shoul d have anot her conponent"
MULT_ATT per _EID (1 1) %I1f an ET identifier contains a nulti-valued attribute
and COWP_per_EID (1 1) %it nust be the only conponent.
or MULT_ATT_per_EID (0 0)
di agnosi s "ET id. &NAME shoul d have no nmulti-valued att. or no other conponent"

ONE_RCLE per_EID (0 0) % An entity type identifier should not have a one-role
di agnosis "One-rol es should be renoved fromentity type identifier &NAMVE"
OPT_ATT _per _EPID (0 0) % Optional colums not allowed in primary ids.
di agnosi s "There shoul d be no optional colum in primary id &NAME. "
COWP_per _RID (1 1) %I1f arel-type identifier has only one conponent,

and ROLE per_RID (0 0) %it nust be an attribute
or COW_per_R D (2 N)
di agnosis "Rel -type identifier &NAME shoul d have nore conponents”

16 Appendix A. The method

MULT_ATT_per_RID (1 1) %I1f a RT identifier contains a nulti-valued attribute

and COVP_per _RID (1 1) %it nust be the only conponent.
or MIULT_ATT per_RID (0 0)

di agnosis "RT id. &NAME shoul d have no nmulti-valued att. or no other conponent"

ONE_ROLE per_RID (0 0) %A rel-type identifier should not have a one-role
di agnosis "One-rol es should be renmoved fromrel-type identifier &NAVE'
OPT_ATT_per _RPID (0 0) % No optional attribute in a rel-type identifier

di agnosis "Optional attributes should be removed fromrel-type id. &NAVE'
end- nodel

% Tool box definitions
9%888888808088/8/8/8888808088b

t ool box TB_ANALYSI S
title "Anal ysis"
description
This tool box allows you to draw a conceptual schenma. You can create and edit
entity types, relationship types, attributes, roles and integrity constraints.

end- descri ption

add create-entity-type

add create-rel -type

add create-attribute

add create-group

add create-role

add nodi fy-entity-type

add nodi fy-rel -type

add nodify-attribute

add nodi fy-group

add nodify-role

add del ete-entity-type

add delete-rel -type

add delete-attribute

add del et e-group

add delete-role

end-t ool box

t ool box TB_CONCEPTUAL_NORMALI SATI ON
title "Conceptual normalisation”
description
Thi s tool box allows you to enhance the readability of your conceptual schema
wi thout nodifying its semantics. You can do it by applying sonme transformations
on entity types, relationship types and attri butes.
You shoul d be aware of sone entity types that | ook |ike relationship types (the

roles they play are all 1-1 and they are identified by all the roles they play),
of sone entity types that ook like attributes (small, just a few attributes, and

they play a single role in a single relationship type), of some entity types
that are linked by a one to one relationship type and that have the sane
semantics, and of large entity types that do not have a clear senantics.

end- descri ption

add tf-ET-into-att

add tf-att-into-ET

add tf-RT-into-ET

add tf-ET-into-RT

add tf-split-nerge

add nodi fy-entity-type

add nodi fy-rel -type

add nodify-attribute

add nodi fy-group

add nodify-role

end-t ool box

t ool box TB_NAME_CONVERS| ON
title "Nane conversion"

Appendix A. The method 17

description
The names of all objects of the schema should be transforned by renoving
white spaces, accents and ot her special symnbols.
end- descri ption
add nane- processi ng
end- t ool box

t ool box TB_SETTI NG_PARAMETERS
title "Setting codi ng paraneters”
description
Al'l ows you to update technical descriptions in order to specify a few
dat abase engi ne dependent paraneters.
end- descri ption
add nodi fy-tech-desc
end- t ool box

t ool box TB_STORAGE_ALLOCATI ON
title "Storage allocation"
description
Allows you to define what files to create and which table goes in which file.
end- descri ption
add create-collection
add nodi fy-collection
add del ete-coll ection
end-t ool box

process CONCEPTUAL_ANALYSI S
title "Conceptual analysis"
description
On the basis of interviewreports with the future users of the systemthat will
be build, a conceptual schena of the database is drawn. It has to reflect the real
world system
end- descri ption

input Interviewreport[1-N "Interviewreport" : TEXT_FILE
out put Conceptual _scherma " Conceptual schema" : CONCEPT_SCHEMA
strat egy

new(Concept ual _schensa) ;

t ool box TB_ANALYSIS [l og off] (Conceptual _schenm, |Interview report);

t ool box TB_CONCEPTUAL_NORNMALI SATION [l og repl ay] (Conceptual _schems);
end- process

process RELATI ONAL_TRANSLATI ON
title "Rel ational design"
description
Transformation of a binary schena into a relational (SQ.-conpliant) schenma.
end- descri ption
updat e Logi cal _scherma "Rel ational |ogical schema" : LOG SQL_SCHENMA
strategy
% Transformis-a relations
glbtrsf "Is-a relations" (Logical_schema,|SA into_RT);
% Transform all non-functional rel-types
gl btrsf "Non-functional rel-types" (Logical _schema,
RT_i nto_ET(ROLE_per _RT(3 N) or ATT_per_RT(1 N)),
SPLI T_MULTI ET_ROLE,
RT_into_ET(N_ROLE per_RT(2 2)));
% Transform al |l conpound and/or nulti-valued attributes
glbtrsf "Attributes"(Logical _schems,

LOOP,
ATT into_ET_| NST(MAX_CARD of ATT(2 N)),
Dl SAGGREGATE,

ENDLOCP) ;

18 Appendix A. The method

% Add technical identifiers where needed in order to be able to transform all
% rel-types into referential constraints

gl btrsf "ldentifiers" (Logical_schema, SMART_ADD TECH I D);

% Transformall rel-types into referential constraints

gl btrsf "References" (Logical _scheng,

LOOP,
RT i nt o_REF,
ENDL OOP)

end- process

process LOG CAL_DESI GN

title "Logical design"

description
Logi cal design is the process of transform ng a conceptual schema into
a data nodel conpliant schema, a relational nodel conpliant schema in this case.
In a first time, the conceptual schema will be sinplified (transfornmed into a
bi nary schema). It will be possible, in a second tinme, to optinise this
sinplified schema. In a third time, this optimsed schema will be transforned
into a relational schema. Finally, a few relational nodel specific optinisations
can be perforned.

end- descri ption

i nput Conceptual _schenma "Conceptual schenma" : CONCEPT_SCHEMA

out put Logical _schenma "Logi cal schema" : LOG _SQL_SCHEMA

intern Raw_| ogi cal _schema "Raw | ogi cal schema" : weak LOG SQ._SCHENMA

strategy
copy(Concept ual _schenm, Raw_| ogi cal _schenm) ;
do RELATI ONAL_TRANSLATI ON(Raw_| ogi cal _schems) ;
copy(Raw_| ogi cal _schenm, Logi cal _schem) ;
t ool box TB_NAME_CONVERSION [l og all] (Logical _schems);

end- process

process PHYSI CAL_DESI GN
title "Physical design"
description
Physi cal design is the process of updating a |ogical schema into a DBMS specific
schema by adjunction of a series of specific structures like files, access
keys, ...
end- descri ption
i nput Logi cal _schema "Logical schema" : LOG SQL_SCHEMA
out put Physi cal _schema "Physical schema" : PHYS SQL_SCHEMA
strategy
copy(Logi cal _schenm, Physi cal _schems) ;
% setting indexes
gl btrsf "Setting indexes" (Physical_schems,
RENAME_GROUP,
GROUP_i nt o_KEY(1 D_i n_GROUP(YES) or REF_in_GROUP(YES)),
REMOVE_PREFI X_KEY) ;
t ool box TB_STORAGE_ALLOCATI ON(Physi cal _schenms) ;
end- process

process CODI NG
title "Coding"
description
Codi ng consites in setting a few database dependent paraneters and generating
an SQ. DDL file.
end- descri ption
i nput Physi cal _scherma "Physical schema" : PHYS_SQ._SCHEMA
i ntern Conpl et ed_physi cal _scherma "Physi cal schema" : PHYS_SQ._SCHEMA
out put SQL_script "SQ database definition script" : SQ_FILE
strat egy
copy(Physi cal _schema, Conpl et ed_physi cal _schems) ;
t ool box TB_SETTI NG_PARAMETERS [l og repl ay] (Conpl eted_physi cal _schenmm);
generate STD_SQ.(Conpl et ed_physi cal _schenma, SQL_scri pt)
end- process

Appendix A. The method

process FORWARD_ENG NEERI NG
title "Forward engi neering"”
description
Forward engineering is the process of building a database froma concept ual
schena.
In this context, you will have to design an SQL dat abase.
end- descri ption
intern Interviewreport "Interview report” : TEXT_FILE,
Concept ual _schema " Conceptual schema" : CONCEPT_SCHEMA,
Logi cal _schema "Logi cal schema" : LOG SQL_SCHEMA,
Physi cal _schenma "Physi cal schema" : PHYS_SQ._SCHEMA,
SQL_script "SQ database definition script" : SQ_FILE
strategy
r epeat
new(|l nterview report);
end- r epeat ;
do CONCEPTUAL_ANALYSI S(I ntervi ew_report, Conceptual _schens);
do LOGd CAL_DESI G\(Concept ual _schems, Logi cal _schems) ;
do PHYSI CAL_DESI GN(Logi cal _schenm, Physi cal _schensa) ;
do CODI N Physi cal _schema, SQL_scri pt)
end- process

% Met hod definition
%88R8888888888888880

met hod
title "Forward engi neering"
version "1.0"
author "Didi er ROLAND
date "28-10-1998"
per f or m FORWARD_ENG NEERI NG
end- net hod

20 Appendix A. The method

A.2 The graphical representation

The main processtype

Thisisthe backbone of the method to follow. It is a sequence that allows an analyst to collect a series of
interview reports and to design the whole database on their basis. The four main process types (concep-
tual analysis, logical design, physical design and coding) can be decomposed, as can be seen in the fol-
lowing pages.

Forward engineering

=

C Interview report)

Conceptua analysis

(Conceptual schema)

Logical design

| Physical design |

(Physical schema)

Coding

—

('SQL database definition script)

A

The main phases of the method

The following process types are the decomposition of the main process types from the previous page.
Thelogical design containsitself an engineering process type (relational design) that is shown here too.

Appendix A. The method

21

Interview report)

Conceptua analysis

T

NEW

Conceptual schema)

—~

(Conceptual schema)

(Intervi q&v report)

Analysis

Conceptua normalisation

Conceptual schema)

Logical design

Logical schema

)

(Conceptual schema)

@PY

(Raw logical schema)

Relational desi g

Name conversion

A

22

Appendix A. The method

Relational design %(Relational logical schema)

<o

(Relational logical schema)

Is-arelations

Non-functional rel /{y;zfgé |

Attributes

/[

| dentifiers’

References

Logical schema

Physical design

Physica schema)

Logical schema

COPY

(Physica schema)

Setting indexes

/

| Storage allocation |

Appendix A. The method

23

Physical schema)

Coding

SQL database definition script)

)

(Physical schema)

COPY

~

(Physical schema)

S

Setting coding paraglet/ers

GENERAT

('SQL database definition script)

A

24 Appendix B. The“library.txt” text

Appendix B. The “library.txt” text

Report of theinterviews

A book is considered as a piece of literary, scientific or technical writing. Every book has an identifying
number, a title, a publisher, a first published date, keywords, and an abstract (the abstracts are being
encoded), the names of its authors, and its bibliographic references (i.e. the books it references).

For each book, the library has acquired a certain number (0, 1 or more) of copies. The copies of agiven
book have distinct serial numbers. For each copy, the date it was acquired is known, as well asitsloca
tion in the library (i.e. the store, the shelf and the row in which it is normally stored), its borrower (if
any), and the number of volumes it comprises. It appears that one cannot borrow any individual
volume, but that one must borrow all the volumes of a copy. In addition, the copies of agiven book may
have different numbers of volumes. A book is aso characterised by its physical state (new, used, worn,
torn, damaged, etc), specified by a one-character code, and by an optional comment on this state.

The author of a book has a name, afirst name, a birth date, and an origin (i.e. the organisation which
(s)he came from when the book was written). For some authors, only the name is known. The
employees admit that two authors may have the same name (and first name), but such a situation does
not seem to raise any problem. Only the authors of books known by the library are recorded.

A copy can be borrowed, at a given date, by a borrower. Borrowers are identified by apersonal id. The
library records the name, the first name, the address (name of the company, street, zip-code and city
name), as well as the phone numbers of each borrower. In addition, when (s)he is absent, another bor-
rower (who is responsible for the former) can be contacted instead. When a copy is brought back, it is
put in a basket from which it is extracted at the end of the day to be stored in its location, so that it is
available again from the following day on. A copy is borrowed on behalf of a project (identified by its
name, but also by itsinternal code). When a copy is brought back to the desk, the employee records the
following information on this copy: borrowing date, current date, borrower and project.

Appendix C. The conceptual schema 25

Appendix C. The conceptual schema

@
Library/Conceptual

origin reference
0-N O-N
\ /
BOOK
Book-id
Title AUTHOR
Publisher L -N—.— i Name .
Date-Published | © written >—1-N— X rst-Name[0-1] responsible-for
Keyword[0-10] Origin[0-1] _
Abstract[0-1] 01 responsible
id: Book-id \ O-N
| /
ON BORROWER
<> s
Name
First-Name
1-1 Address
0-N—— Company
COPY Strect
Copy-No : ; Zip-code
Date-Acquired 0-1 borrowing City
Location Borrow-Date, }
Store / -Plﬁ.lor.]e[l 3
Shelf id: Pid
Row
gg-of-vm umes\ closed-borrowing O-N
e
Comment[0-1] oN { Egg_%"ggale x PROJECT
id: of. BOOK 4. COPY 0 Pg:ode
Copy-No \ s / ~0-N—— Title
Borrow-Date 14 Peode
id:Title

